scholarly journals Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence

Author(s):  
Troy S. Magney ◽  
David R. Bowling ◽  
Barry A. Logan ◽  
Katja Grossmann ◽  
Jochen Stutz ◽  
...  

Northern hemisphere evergreen forests assimilate a significant fraction of global atmospheric CO2 but monitoring large-scale changes in gross primary production (GPP) in these systems is challenging. Recent advances in remote sensing allow the detection of solar-induced chlorophyll fluorescence (SIF) emission from vegetation, which has been empirically linked to GPP at large spatial scales. This is particularly important in evergreen forests, where traditional remote-sensing techniques and terrestrial biosphere models fail to reproduce the seasonality of GPP. Here, we examined the mechanistic relationship between SIF retrieved from a canopy spectrometer system and GPP at a winter-dormant conifer forest, which has little seasonal variation in canopy structure, needle chlorophyll content, and absorbed light. Both SIF and GPP track each other in a consistent, dynamic fashion in response to environmental conditions. SIF and GPP are well correlated (R2 = 0.62–0.92) with an invariant slope over hourly to weekly timescales. Large seasonal variations in SIF yield capture changes in photoprotective pigments and photosystem II operating efficiency associated with winter acclimation, highlighting its unique ability to precisely track the seasonality of photosynthesis. Our results underscore the potential of new satellite-based SIF products (TROPOMI, OCO-2) as proxies for the timing and magnitude of GPP in evergreen forests at an unprecedented spatiotemporal resolution.

2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Jian Kang ◽  
Rui Jin ◽  
Xin Li ◽  
Yang Zhang

In recent decades, microwave remote sensing (RS) has been used to measure soil moisture (SM). Long-term and large-scale RS SM datasets derived from various microwave sensors have been used in environmental fields. Understanding the accuracies of RS SM products is essential for their proper applications. However, due to the mismatched spatial scale between the ground-based and RS observations, the truth at the pixel scale may not be accurately represented by ground-based observations, especially when the spatial density of in situ measurements is low. Because ground-based observations are often sparsely distributed, temporal upscaling was adopted to transform a few in situ measurements into SM values at a pixel scale of 1 km by introducing the temperature vegetation dryness index (TVDI) related to SM. The upscaled SM showed high consistency with in situ SM observations and could accurately capture rainfall events. The upscaled SM was considered as the reference data to evaluate RS SM products at different spatial scales. In regard to the validation results, in addition to the correlation coefficient (R) of the Soil Moisture Active Passive (SMAP) SM being slightly lower than that of the Climate Change Initiative (CCI) SM, SMAP had the best performance in terms of the root-mean-square error (RMSE), unbiased RMSE and bias, followed by the CCI. The Soil Moisture and Ocean Salinity (SMOS) products were in worse agreement with the upscaled SM and were inferior to the R value of the X-band SM of the Advanced Microwave Scanning Radiometer 2 (AMSR2). In conclusion, in the study area, the SMAP and CCI SM are more reliable, although both products were underestimated by 0.060 cm3 cm−3 and 0.077 cm3 cm−3, respectively. If the biases are corrected, then the improved SMAP with an RMSE of 0.043 cm3 cm−3 and the CCI with an RMSE of 0.039 cm3 cm−3 will hopefully reach the application requirement for an accuracy with an RMSE less than 0.040 cm3 cm−3.


Author(s):  
S. Wang ◽  
Z. Li ◽  
Y. Zhang ◽  
D. Yang ◽  
C. Ni

Abstract. Over the last 40 years, the light use efficiency (LUE) model has become a popular approach for gross primary productivity (GPP) estimation in the carbon and remote sensing communities. Despite the fact that the LUE model provides a simple but effective way to approximate GPP at ecosystem to global scales from remote sensing data, when implemented in real GPP modelling, however, the practical form of the model can vary. By reviewing different forms of LUE model and their performances at ecosystem to global scales, we conclude that the relationships between LUE and optical vegetation active indicators (OVAIs, including vegetation indices and sun-induced chlorophyll fluorescence-based products) across time and space are key for understanding and applying the LUE model. In this work, the relationships between LUE and OVAIs are investigated at flux-tower scale, using both remotely sensed and simulated datasets. We find that i) LUE-OVAI relationships during the season are highly site-dependent, which is complexed by seasonal changes of leaf pigment concentration, canopy structure, radiation and Vcmax; ii) LUE tends to converge during peak growing season, which enables applying pure OVAI-based LUE models without specifically parameterizing LUE and iii) Chlorophyll-sensitive OVAIs, especially machine-learning-based SIF-like signal, exhibits a potential to represent spatial variability of LUE during the peak growing season.We also show the power of time-series model simulations to improve the understanding of LUE-OVAI relationships at seasonal scale.


2014 ◽  
Vol 11 (1) ◽  
pp. 75-90 ◽  
Author(s):  
L. Resplandy ◽  
J. Boutin ◽  
L. Merlivat

Abstract. The considerable uncertainties in the carbon budget of the Southern Ocean are largely attributed to unresolved variability, in particular at a seasonal timescale and small spatial scale (~ 100 km). In this study, the variability of surface pCO2 and dissolved inorganic carbon (DIC) at seasonal and small spatial scales is examined using a data set of surface drifters including ~ 80 000 measurements at high spatiotemporal resolution. On spatial scales of 100 km, we find gradients ranging from 5 to 50 μatm for pCO2 and 2 to 30 μmol kg−1 for DIC, with highest values in energetic and frontal regions. This result is supported by a second estimate obtained with sea surface temperature (SST) satellite images and local DIC–SST relationships derived from drifter observations. We find that dynamical processes drive the variability of DIC at small spatial scale in most regions of the Southern Ocean and the cascade of large-scale gradients down to small spatial scales, leading to gradients up to 15 μmol kg−1 over 100 km. Although the role of biological activity is more localized, it enhances the variability up to 30 μmol kg−1 over 100 km. The seasonal cycle of surface DIC is reconstructed following Mahadevan et al. (2011), using an annual climatology of DIC and a monthly climatology of mixed layer depth. This method is evaluated using drifter observations and proves to be a reasonable first-order estimate of the seasonality in the Southern Ocean that could be used to validate model simulations. We find that small spatial-scale structures are a non-negligible source of variability for DIC, with amplitudes of about a third of the variations associated with the seasonality and up to 10 times the magnitude of large-scale gradients. The amplitude of small-scale variability reported here should be kept in mind when inferring temporal changes (seasonality, interannual variability, decadal trends) of the carbon budget from low-resolution observations and models.


2021 ◽  
Vol 4 ◽  
Author(s):  
Theresia Yazbeck ◽  
Gil Bohrer ◽  
Pierre Gentine ◽  
Luping Ye ◽  
Nicola Arriga ◽  
...  

Solar-Induced Chlorophyll Fluorescence (SIF) can provide key information about the state of photosynthesis and offers the prospect of defining remote sensing-based estimation of Gross Primary Production (GPP). There is strong theoretical support for the link between SIF and GPP and this relationship has been empirically demonstrated using ground-based, airborne, and satellite-based SIF observations, as well as modeling. However, most evaluations have been based on monthly and annual scales, yet the GPP:SIF relations can be strongly influenced by both vegetation structure and physiology. At the monthly timescales, the structural response often dominates but short-term physiological variations can strongly impact the GPP:SIF relations. Here, we test how well SIF can predict the inter-daily variation of GPP during the growing season and under stress conditions, while taking into account the local effect of sites and abiotic conditions. We compare the accuracy of GPP predictions from SIF at different timescales (half-hourly, daily, and weekly), while evaluating effect of adding environmental variables to the relationship. We utilize observations for years 2018–2019 at 31 mid-latitudes, forested, eddy covariance (EC) flux sites in North America and Europe and use TROPOMI satellite data for SIF. Our results show that SIF is a good predictor of GPP, when accounting for inter-site variation, probably due to differences in canopy structure. Seasonally averaged leaf area index, fraction of absorbed photosynthetically active radiation (fPAR) and canopy conductance provide a predictor to the site-level effect. We show that fPAR is the main factor driving errors in the linear model at high temporal resolution. Adding water stress indicators, namely canopy conductance, to a multi-linear SIF-based GPP model provides the best improvement in the model precision at the three considered timescales, showing the importance of accounting for water stress in GPP predictions, independent of the SIF signal. SIF is a promising predictor for GPP among other remote sensing variables, but more focus should be placed on including canopy structure, and water stress effects in the relationship, especially when considering intra-seasonal, and inter- and intra-daily resolutions.


Author(s):  
Brady S. Hardiman ◽  
Christopher M. Gough ◽  
John R. Butnor ◽  
Gil Bohrer ◽  
Matteo Detto ◽  
...  

Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy lidar (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence at multiple spatial scales ≤ 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more evenly distributed by height and depth, respectively, as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5-4 meters, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing lidar and radar technologies to quantitatively couple above- and belowground ecosystem structure.


2020 ◽  
Vol 17 (18) ◽  
pp. 4523-4544 ◽  
Author(s):  
Rui Cheng ◽  
Troy S. Magney ◽  
Debsunder Dutta ◽  
David R. Bowling ◽  
Barry A. Logan ◽  
...  

Abstract. Photosynthesis by terrestrial plants represents the majority of CO2 uptake on Earth, yet it is difficult to measure directly from space. Estimation of gross primary production (GPP) from remote sensing indices represents a primary source of uncertainty, in particular for observing seasonal variations in evergreen forests. Recent vegetation remote sensing techniques have highlighted spectral regions sensitive to dynamic changes in leaf/needle carotenoid composition, showing promise for tracking seasonal changes in photosynthesis of evergreen forests. However, these have mostly been investigated with intermittent field campaigns or with narrow-band spectrometers in these ecosystems. To investigate this potential, we continuously measured vegetation reflectance (400–900 nm) using a canopy spectrometer system, PhotoSpec, mounted on top of an eddy-covariance flux tower in a subalpine evergreen forest at Niwot Ridge, Colorado, USA. We analyzed driving spectral components in the measured canopy reflectance using both statistical and process-based approaches. The decomposed spectral components co-varied with carotenoid content and GPP, supporting the interpretation of the photochemical reflectance index (PRI) and the chlorophyll/carotenoid index (CCI). Although the entire 400–900 nm range showed additional spectral changes near the red edge, it did not provide significant improvements in GPP predictions. We found little seasonal variation in both normalized difference vegetation index (NDVI) and the near-infrared vegetation index (NIRv) in this ecosystem. In addition, we quantitatively determined needle-scale chlorophyll-to-carotenoid ratios as well as anthocyanin contents using full-spectrum inversions, both of which were tightly correlated with seasonal GPP changes. Reconstructing GPP from vegetation reflectance using partial least-squares regression (PLSR) explained approximately 87 % of the variability in observed GPP. Our results linked the seasonal variation in reflectance to the pool size of photoprotective pigments, highlighting all spectral locations within 400–900 nm associated with GPP seasonality in evergreen forests.


2021 ◽  
Author(s):  
Lixin Wang ◽  
Wenzhe Jiao ◽  
Matthew McCabe

<p>Satellite based remote sensing plays important role in studying regional to continental scale drought. One of the unique elements of remote sensing platforms is their multi-sensor capabilities, which enhance the capacity for characterizing drought from a variety of aspects. However, multi-sensor integrated drought evaluation is in its infancy. To advocate and encourage on-going exploration and integration of multi-sensor remote sensing for drought studies, we provide an overview of the role of multi-sensor remote sensing for addressing knowledge gaps and driving advances in drought studies. We first present a comprehensive summary of large-scale drought-related remote sensing datasets that can be used for multi-sensor drought studies. Then we provide a detailed review of how the integrated multi-sensor remote sensing could enhance our analysis in multiple important drought related phenomena and mechanisms such as drought-induced tree mortality, drought-related ecosystem fires, post-drought recovery and legacy effects, flash drought, and drought trends under climate change. We also provide a summary of recent modeling advances towards developing integrated multi-sensor remote sensing drought indices. We highlight that leveraging multi-sensor remote sensing provides unique benefits for regional to global drought studies, particularly in: 1) revealing the complex drought impact mechanisms on various ecosystem components; 2) providing continuous long-term drought related information at large scales; 3) presenting real-time drought information with high spatiotemporal resolution; 4) providing multiple lines of evidence of drought monitoring to improve modeling and prediction robustness; and 5) improving the accuracy of drought monitoring and assessment efforts.</p>


2020 ◽  
Author(s):  
Peter Lawrence ◽  
Ally Evans ◽  
Paul Brooks ◽  
Tim D'Urban Jackson ◽  
Stuart Jenkins ◽  
...  

<p>Coastal ecosystems are threatened by habitat loss and anthropogenic “smoothing” as hard engineering approaches to sea defence, such as sea-walls, rock armouring, and offshore reefs, become common place. These artificial structures use homogenous materials (e.g. concrete or quarried rock) and as a result, lack the surface heterogeneity of natural rocky shoreline known to play a key role in niche creation and higher species diversity. Despite significant investment and research into soft engineering and ecologically sensitive approaches to coastal development, there are still knowledge gaps, particularly in relation to how patterns that are observed in nature can be utilised to improve artificial shores.</p><p>Given the technical improvements and significant reductions in cost within the portable remote sensing field (structure from motion and laser scanning), we are now able to plug gaps in our understanding of how habitat heterogeneity can influence overall site diversity. These improvements represent an excellent opportunity to improve our understanding of the spatial scales and complexity of habitats that species occur within and ultimately improve the ecological design of engineered structures in areas experiencing “smoothing” and habitat loss.</p><p>In this talk, I will highlight how advances in remote sensing techniques can be applied to context-specific ecological problems, such as low diversity and loss of rare species within marine infrastructure. I will describe our approach to combining large-scale ecological, 3D geophysical and engineering research to design statistically-derived ecologically-inspired solutions to smooth artificial surfaces. We created experimental concrete enhancement units and deployed them at a number of coastal locations. I will present preliminary ecological results, provide a workflow of unit development and statistical approaches, and finally discuss how these advances may improve future ecological intervention and design options.</p>


2012 ◽  
Vol 25 (15) ◽  
pp. 5327-5342 ◽  
Author(s):  
Jiafu Mao ◽  
Peter E. Thornton ◽  
Xiaoying Shi ◽  
Maosheng Zhao ◽  
Wilfred M. Post

Abstract Remote sensing can provide long-term and large-scale products helpful for ecosystem model evaluation. The authors compare monthly gross primary production (GPP) simulated by the Community Land Model, version 4 (CLM4) at a half-degree resolution with satellite estimates of GPP from the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product (MOD17) for the 10-yr period January 2000–December 2009. The assessment is presented in terms of long-term mean carbon assimilation, seasonal mean distributions, amplitude and phase of the annual cycle, and intraannual and interannual GPP variability and their responses to climate variables. For the long-term annual and seasonal means, major GPP patterns are clearly demonstrated by both products. Compared to the MODIS product, CLM4 overestimates the magnitude of GPP for tropical evergreen forests. CLM4 has a longer carbon uptake period than MODIS for most plant functional types (PFTs) with an earlier onset of GPP in spring and a later decline of GPP in autumn. Empirical orthogonal function analysis of the monthly GPP changes indicates that, on the intraannual scale, both CLM4 and MODIS display similar spatial representations and temporal patterns for most terrestrial ecosystems except in northeast Russia and in the very dry region of central Australia. For 2000–09, CLM4 simulated increases in annual averaged GPP over both hemispheres; however, estimates from MODIS suggest a reduction in the Southern Hemisphere (−0.2173 PgC yr−1), balancing the significant increase over the Northern Hemisphere (0.2157 PgC yr−1). The evaluations highlight strengths and weaknesses of the CLM4 primary production and illuminate potential improvements and developments.


2020 ◽  
Author(s):  
Daniel Wieczynski ◽  
Sandra Diaz ◽  
Sandra M. Duran ◽  
Nikolaos Fyllas ◽  
Norma Salinas ◽  
...  

Abstract Forests are integral to global carbon cycling but are threatened by anthropogenic degradation and climate change. Assessing this global threat has been hindered by a lack of clear, flexible, and easy-to-use productivity models along with a lack of functional trait and productivity data for parameterizing and testing those models. Current productivity models are either extremely complex requiring up to hundreds of parameters, many sub-models, and considerable computational expense or rely on statistical trait-growth relationships that can be hard to extrapolate to new systems or climates. Here we provide a simple alternative: a remote sensing canopy functional model (RS-CFM) that uses remotely-sensed foliar traits and canopy structure data to efficiently map productivity at high-resolution and large spatial scales. We test this model by quantifying net primary productivity (NPP) at 0.01-ha resolution in 30,040 hectares of Peruvian tropical rainforest along a 3,322-m Amazon-to-Andes elevation gradient. Our model predicts local NPP and elevational shifts in NPP much more accurately and in greater detail than a prominent alternative method—NASA’s MODIS NPP product. Furthermore, we show how NPP estimates depend on light competition and identify the appropriate spatial resolution for remote productivity estimation. Our framework opens up possibilities to fully harness remote sensing data and reliably scale up from traits to map regional or global productivity in a more direct, efficient, and cost-effective manner.


Sign in / Sign up

Export Citation Format

Share Document