scholarly journals Multimodal cue integration in the dung beetle compass

2019 ◽  
Vol 116 (28) ◽  
pp. 14248-14253 ◽  
Author(s):  
Marie Dacke ◽  
Adrian T. A. Bell ◽  
James J. Foster ◽  
Emily J. Baird ◽  
Martin F. Strube-Bloss ◽  
...  

South African ball-rolling dung beetles exhibit a unique orientation behavior to avoid competition for food: after forming a piece of dung into a ball, they efficiently escape with it from the dung pile along a straight-line path. To keep track of their heading, these animals use celestial cues, such as the sun, as an orientation reference. Here we show that wind can also be used as a guiding cue for the ball-rolling beetles. We demonstrate that this mechanosensory compass cue is only used when skylight cues are difficult to read, i.e., when the sun is close to the zenith. This raises the question of how the beetles combine multimodal orientation input to obtain a robust heading estimate. To study this, we performed behavioral experiments in a tightly controlled indoor arena. This revealed that the beetles register directional information provided by the sun and the wind and can use them in a weighted manner. Moreover, the directional information can be transferred between these 2 sensory modalities, suggesting that they are combined in the spatial memory network in the beetle’s brain. This flexible use of compass cue preferences relative to the prevailing visual and mechanosensory scenery provides a simple, yet effective, mechanism for enabling precise compass orientation at any time of the day.

2014 ◽  
Vol 369 (1636) ◽  
pp. 20130036 ◽  
Author(s):  
M. Dacke ◽  
Basil el Jundi ◽  
Jochen Smolka ◽  
Marcus Byrne ◽  
Emily Baird

Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 526
Author(s):  
Lana Khaldy ◽  
Claudia Tocco ◽  
Marcus Byrne ◽  
Marie Dacke

To guide their characteristic straight-line orientation away from the dung pile, ball-rolling dung beetles steer according to directional information provided by celestial cues, which, among the most relevant are the sun and polarised skylight. Most studies regarding the use of celestial cues and their influence on the orientation system of the diurnal ball-rolling beetle have been performed on beetles of the tribe Scarabaeini living in open habitats. These beetles steer primarily according to the directional information provided by the sun. In contrast, Sisyphus fasciculatus, a species from a different dung-beetle tribe (the Sisyphini) that lives in habitats with closely spaced trees and tall grass, relies predominantly on directional information from the celestial pattern of polarised light. To investigate the influence of visual ecology on the relative weight of these cues, we studied the orientation strategy of three different tribes of dung beetles (Scarabaeini, Sisyphini and Gymnopleurini) living within the same biome, but in different habitat types. We found that species within a tribe share the same orientation strategy, but that this strategy differs across the tribes; Scarabaeini, living in open habitats, attribute the greatest relative weight to the directional information from the sun; Sisyphini, living in closed habitats, mainly relies on directional information from polarised skylight; and Gymnopleurini, also living in open habitats, appear to weight both cues equally. We conclude that, despite exhibiting different body size, eye size and morphology, dung beetles nevertheless manage to solve the challenge of straight-line orientation by weighting visual cues that are particular to the habitat in which they are found. This system is however dynamic, allowing them to operate equally well even in the absence of the cue given the greatest relative weight by the particular species.


2011 ◽  
Vol 366 (1565) ◽  
pp. 697-702 ◽  
Author(s):  
M. Dacke ◽  
M. J. Byrne ◽  
E. Baird ◽  
C. H. Scholtz ◽  
E. J. Warrant

Prominent in the sky, but not visible to humans, is a pattern of polarized skylight formed around both the Sun and the Moon. Dung beetles are, at present, the only animal group known to use the much dimmer polarization pattern formed around the Moon as a compass cue for maintaining travel direction. However, the Moon is not visible every night and the intensity of the celestial polarization pattern gradually declines as the Moon wanes. Therefore, for nocturnal orientation on all moonlit nights, the absolute sensitivity of the dung beetle's polarization detector may limit the precision of this behaviour. To test this, we studied the straight-line foraging behaviour of the nocturnal ball-rolling dung beetle Scarabaeus satyrus to establish when the Moon is too dim—and the polarization pattern too weak—to provide a reliable cue for orientation. Our results show that celestial orientation is as accurate during crescent Moon as it is during full Moon. Moreover, this orientation accuracy is equal to that measured for diurnal species that orient under the 100 million times brighter polarization pattern formed around the Sun. This indicates that, in nocturnal species, the sensitivity of the optical polarization compass can be greatly increased without any loss of precision.


2021 ◽  
pp. 1-30
Author(s):  
A. Guo ◽  
Z. Zhou ◽  
R. Wang ◽  
X. Zhao ◽  
X. Zhu

Abstract The full-wing solar-powered UAV has a large aspect ratio, special configuration, and excellent aerodynamic performance. This UAV converts solar energy into electrical energy for level flight and storage to improve endurance performance. The UAV only uses a differential throttle for lateral control, and the insufficient control capability during crosswind landing results in a large lateral distance bias and leads to multiple landing failures. This paper analyzes 11 landing failures and finds that a large lateral distance bias at the beginning of the approach and the coupling of base and differential throttle control is the main reason for multiple landing failures. To improve the landing performance, a heading angle-based vector field (VF) method is applied to the straight-line and orbit paths following and two novel 3D Dubins landing paths are proposed to reduce the initial lateral control bias. The results show that the straight-line path simulation exhibits similar phenomenon with the practical failure; the single helical path has the highest lateral control accuracy; the left-arc to left-arc (L-L) path avoids the saturation of the differential throttle; and both paths effectively improve the probability of successful landing.


2003 ◽  
Vol 51 (6) ◽  
pp. 597 ◽  
Author(s):  
Wolfgang Wiltschko ◽  
Ursula Munro ◽  
Hugh Ford ◽  
Roswitha Wiltschko

The ability of migratory silvereyes to orient was tested in the geomagnetic field with one eye covered. Silvereyes using only their right eye were able to orient in migratory direction just as well as birds using both eyes. Using only their left eye, however, the birds did not show a significant directional preference. These data indicate that directional information from the magnetic field is mediated almost exclusively by the right eye and processed by the left hemisphere of the brain. Together with corresponding findings from European robins and indications for a similar phenomenon in homing pigeons, they suggest that a strong lateralisation of the magnetic compass is widespread among birds.


Target tracking using bearings-only measurements in passive mode operation of sonar is a crucial issue of underwater tracking. Target motion in underwater scenario is analyzed using bearings-only measurements and calculating parameters like range, course and speed of the target. This is called Target Motion Analysis (TMA). TMA process is highly non-linear as the measurements chosen are nonlinearly related to the selected target state vector and the traditional, optimal linear Kalman filter will not be appropriate to use. It is presumed that the target is moving in straight line path with constant velocity, so Extended Kalman Filter (EKF) is proposed in this paper. The algorithm is simulated for several scenarios using MATLAB. Monte-Carlo runs are performed to evaluate the capability of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document