scholarly journals Auronidins are a previously unreported class of flavonoid pigments that challenges when anthocyanin biosynthesis evolved in plants

2019 ◽  
Vol 116 (40) ◽  
pp. 20232-20239 ◽  
Author(s):  
Helge Berland ◽  
Nick W. Albert ◽  
Anne Stavland ◽  
Monica Jordheim ◽  
Tony K. McGhie ◽  
...  

Anthocyanins are key pigments of plants, providing color to flowers, fruit, and foliage and helping to counter the harmful effects of environmental stresses. It is generally assumed that anthocyanin biosynthesis arose during the evolutionary transition of plants from aquatic to land environments. Liverworts, which may be the closest living relatives to the first land plants, have been reported to produce red cell wall-bound riccionidin pigments in response to stresses such as UV-B light, drought, and nutrient deprivation, and these have been proposed to correspond to the first anthocyanidins present in early land plant ancestors. Taking advantage of the liverwort model species Marchantia polymorpha, we show that the red pigments of Marchantia are formed by a phenylpropanoid biosynthetic branch distinct from that leading to anthocyanins. They constitute a previously unreported flavonoid class, for which we propose the name “auronidin,” with similar colors as anthocyanin but different chemistry, including strong fluorescence. Auronidins might contribute to the remarkable ability of liverworts to survive in extreme environments on land, and their discovery calls into question the possible pigment status of the first land plants.

1986 ◽  
Vol 123 (4) ◽  
pp. 445-454 ◽  
Author(s):  
J. Gray ◽  
J. N. Theron ◽  
A. J. Boucot

AbstractThe first occurrence of Early Paleozoic land plants is reported from South Africa. The plant remains are small, compact tetrahedral spore tetrads. They occur abundantly in the Soom Shale Member of the Cedarberg Formation, Table Mountain Group. Marine? phytoplankton (sphaeromorphs or leiospheres) occur with the spore tetrads in all samples. Rare chitinozoans are found in half the samples. Together with similar spore tetrads from the Paraná Basin (Gray et al. 1985) these are the first well-documented records of Ashgill and/or earlier Llandovery land plants from the Malvinokaffric Realm, and from the African continent south of Libya. These spore tetrads have botanical, evolutionary, and biogeographic significance. Their size in comparison with spore tetrads from stratigraphic sections throughout eastern North America, suggests that an earliest Llandovery age is more probable for the Soom Shale Member, although a latest Ordovician age cannot be discounted. The age of the brachiopods in the overlying Disa Siltstone Member has been in contention for over a decade. Both Ashgillian and Early Llandovery ages have been proposed. The age of the underlying Soom Shale Member based on plant spores and trilobites (earliest Llandovery or latest Ashgillian) suggests that the Disa Siltstone Member is also likely to be of Early Llandovery age, although the distance between the Soom Shale Member spore-bearing locality and rocks to the south yielding abundant invertebrate body fossils at one locality is great enough to permit diachroneity.


2000 ◽  
Vol 355 (1398) ◽  
pp. 769-793 ◽  
Author(s):  
Karen Sue Renzaglia ◽  
R. Joel Duff ◽  
Daniel L. Nickrent ◽  
David J. Garbary

As the oldest extant lineages of land plants, bryophytes provide a living laboratory in which to evaluate morphological adaptations associated with early land existence. In this paper we examine reproductive and structural innovations in the gametophyte and sporophyte generations of hornworts, liverworts, mosses and basal pteridophytes. Reproductive features relating to spermatogenesis and the architecture of motile male gametes are overviewed and evaluated from an evolutionary perspective. Phylogenetic analyses of a data set derived from spermatogenesis and one derived from comprehensive morphogenetic data are compared with a molecular analysis of nuclear and mitochondrial small subunit rDNA sequences. Although relatively small because of a reliance on water for sexual reproduction, gametophytes of bryophytes are the most elaborate of those produced by any land plant. Phenotypic variability in gametophytic habit ranges from leafy to thalloid forms with the greatest diversity exhibited by hepatics. Appendages, including leaves, slime papillae and hairs, predominate in liverworts and mosses, while hornwort gametophytes are strictly thalloid with no organized external structures. Internalization of reproductive and vegetative structures within mucilage–filled spaces is an adaptive strategy exhibited by hornworts. The formative stages of gametangial development are similar in the three bryophyte groups, with the exception that in mosses apical growth is intercalated into early organogenesis, a feature echoed in moss sporophyte ontogeny. A monosporangiate, unbranched sporophyte typifies bryophytes, but developmental and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation. Sporophyte morphogenesis in hornworts involves non–synchronized sporogenesis and the continued elongation of the single sporangium, features unique among archegoniates. In hepatics, elongation of the sporophyte seta and archegoniophore is rapid and requires instantaneous wall expandability and hydrostatic support. Unicellular, spiralled elaters and capsule dehiscence through the formation of four regular valves are autapomorphies of liverworts. Sporophytic sophistications in the moss clade include conducting tissue, stomata, an assimilative layer and an elaborate peristome for extended spore dispersal. Characters such as stomata and conducting cells that are shared among sporophytes of mosses, hornworts and pteridophytes are interpreted as parallelisms and not homologies. Our phylogenetic analysis of three different data sets is the most comprehensive to date and points to a single phylogenetic solution for the evolution of basal embryophytes. Hornworts are supported as the earliest divergent embryophyte clade with a moss/liverwort clade sister to tracheophytes. Among pteridophytes, lycophytes are monophyletic and an assemblage containing ferns, Equisetum and psilophytes is sister to seed plants. Congruence between morphological and molecular hypotheses indicates that these data sets are tracking the same phylogenetic signal and reinforces our phylogenetic conclusions. It appears that total evidence approaches are valuable in resolving ancient radiations such as those characterizing the evolution of early embryophytes. More information on land plant phylogeny can be found at: http://www.science.siu.edu/landplants/index.html.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tetsuya Hisanaga ◽  
Shota Fujimoto ◽  
Yihui Cui ◽  
Katsutoshi Sato ◽  
Ryosuke Sano ◽  
...  

KNOX and BELL transcription factors regulate distinct steps of diploid development in plants. In the green alga Chlamydomonas reinhardtii, KNOX and BELL proteins are inherited by gametes of the opposite mating types and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as Physcomitrium patens and Arabidopsis thaliana, KNOX and BELL proteins function in meristem maintenance and organogenesis during the later stages of diploid development. However, whether the contrasting functions of KNOX and BELL were acquired independently in algae and land plants is currently unknown. Here, we show that in the basal land plant species Marchantia polymorpha, gamete-expressed KNOX and BELL are required to initiate zygotic development by promoting nuclear fusion in a manner strikingly similar to that in C. reinhardtii. Our results indicate that zygote activation is the ancestral role of KNOX/BELL transcription factors, which shifted toward meristem maintenance as land plants evolved.


2018 ◽  
Vol 115 (10) ◽  
pp. E2274-E2283 ◽  
Author(s):  
Jennifer L. Morris ◽  
Mark N. Puttick ◽  
James W. Clark ◽  
Dianne Edwards ◽  
Paul Kenrick ◽  
...  

Establishing the timescale of early land plant evolution is essential for testing hypotheses on the coevolution of land plants and Earth’s System. The sparseness of early land plant megafossils and stratigraphic controls on their distribution make the fossil record an unreliable guide, leaving only the molecular clock. However, the application of molecular clock methodology is challenged by the current impasse in attempts to resolve the evolutionary relationships among the living bryophytes and tracheophytes. Here, we establish a timescale for early land plant evolution that integrates over topological uncertainty by exploring the impact of competing hypotheses on bryophyte−tracheophyte relationships, among other variables, on divergence time estimation. We codify 37 fossil calibrations for Viridiplantae following best practice. We apply these calibrations in a Bayesian relaxed molecular clock analysis of a phylogenomic dataset encompassing the diversity of Embryophyta and their relatives within Viridiplantae. Topology and dataset sizes have little impact on age estimates, with greater differences among alternative clock models and calibration strategies. For all analyses, a Cambrian origin of Embryophyta is recovered with highest probability. The estimated ages for crown tracheophytes range from Late Ordovician to late Silurian. This timescale implies an early establishment of terrestrial ecosystems by land plants that is in close accord with recent estimates for the origin of terrestrial animal lineages. Biogeochemical models that are constrained by the fossil record of early land plants, or attempt to explain their impact, must consider the implications of a much earlier, middle Cambrian–Early Ordovician, origin.


2000 ◽  
Vol 355 (1398) ◽  
pp. 717-732 ◽  
Author(s):  
Charles H. Wellman ◽  
Jane Gray

Dispersed microfossils (spores and phytodebris) provide the earliest evidence for land plants. They are first reported from the Llanvirn (Mid–Ordovician). More or less identical assemblages occur from the Llanvirn (Mid–Ordovician) to the late Llandovery (Early Silurian), suggesting a period of relative stasis some 40 Myr in duration. Various lines of evidence suggest that these early dispersed microfossils derive from parent plants that were bryophyte–like if not in fact bryophytes. In the late Llandovery (late Early Silurian) there was a major change in the nature of dispersed spore assemblages as the separated products of dyads (hilate monads) and tetrads (trilete spores) became relatively abundant. The inception of trilete spores probably represents the appearance of vascular plants or their immediate progenitors. A little later in time, in the Wenlock (early Late Silurian), the earliest unequivocal land plant megafossils occur. They are represented by rhyniophytoids. It is only from the Late Silurian onwards that the microfossil / megafossil record can be integrated and utilized in interpretation of the flora. Dispersed microfossils are preserved in vast numbers, in a variety of environments, and have a reasonable spatial and temporal fossil record. The fossil record of plant megafossils by comparison is poor and biased, with only a dozen or so known pre–Devonian assemblages. In this paper, the early land plant microfossil record, and its interpretation, are reviewed. New discoveries, novel techniques and fresh lines of inquiry are outlined and discussed.


2020 ◽  
Author(s):  
Tetsuya Hisanaga ◽  
Shota Fujimoto ◽  
Yihui Cui ◽  
Katsutoshi Sato ◽  
Ryosuke Sano ◽  
...  

AbstractKNOX and BELL transcription factors regulate distinct steps of diploid development in the green lineages. In the green alga Chlamydomonas reinhardtii, KNOX and BELL proteins are inherited by gametes of the opposite mating types, and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as Physcomitrella and Arabidopsis, KNOX and BELL proteins function in meristem maintenance and organogenesis during the later stages of diploid development. However, whether the contrasting functions of KNOX and BELL were acquired independently in algae and land plants is currently unknown. Here we show that in the basal land plant species Marchantia polymorpha, gamete-expressed KNOX and BELL are required to initiate zygotic development by promoting nuclear fusion in a manner strikingly similar to that of C. reinhardtii. Our results indicate that zygote activation is the ancestral role of KNOX/BELL transcription factors, which shifted toward meristem maintenance as land plants evolved.


2018 ◽  
Author(s):  
Shigeo S. Sugano ◽  
Ryuichi Nishihama ◽  
Makoto Shirakawa ◽  
Junpei Takagi ◽  
Yoriko Matsuda ◽  
...  

AbstractMarchantia polymorpha is one of the model species of basal land plants. Although CRISPR/Cas9-based genome editing has already been demonstrated for this plant, the efficiency was too low to apply to functional analysis. In this study, we show the establishment of CRISPR/Cas9 genome editing vectors with high efficiency for both construction and genome editing. Codon optimization of Cas9 to Arabidopsis achieved over 70% genome editing efficiency at two loci tested. Systematic assessment revealed that guide sequences of 17 nt or shorter dramatically decreased this efficiency. We also demonstrated that a combinatorial use of this system and a floxed complementation construct enabled conditional analysis of a nearly essential gene. This study reports that simple, rapid, and efficient genome editing is feasible with the series of developed vectors.


2018 ◽  
Vol 115 (16) ◽  
pp. E3846-E3855 ◽  
Author(s):  
Philip Carella ◽  
Anna Gogleva ◽  
Marta Tomaselli ◽  
Carolin Alfs ◽  
Sebastian Schornack

The expansion of plants onto land was a formative event that brought forth profound changes to the earth’s geochemistry and biota. Filamentous eukaryotic microbes developed the ability to colonize plant tissues early during the evolution of land plants, as demonstrated by intimate, symbiosis-like associations in >400 million-year-old fossils. However, the degree to which filamentous microbes establish pathogenic interactions with early divergent land plants is unclear. Here, we demonstrate that the broad host-range oomycete pathogen Phytophthora palmivora colonizes liverworts, the earliest divergent land plant lineage. We show that P. palmivora establishes a complex tissue-specific interaction with Marchantia polymorpha, where it completes a full infection cycle within air chambers of the dorsal photosynthetic layer. Remarkably, P. palmivora invaginates M. polymorpha cells with haustoria-like structures that accumulate host cellular trafficking machinery and the membrane syntaxin MpSYP13B, but not the related MpSYP13A. Our results indicate that the intracellular accommodation of filamentous microbes is an ancient plant trait that is successfully exploited by pathogens like P. palmivora.


Paleobiology ◽  
2000 ◽  
Vol 26 (3) ◽  
pp. 405-418 ◽  
Author(s):  
A. Roth-Nebelsick ◽  
G. Grimm ◽  
V. Mosbrugger ◽  
H. Hass ◽  
H. Kerp

New morphometric data gathered from cross-sections of two Lower Devonian land plants (Rhynia gwynne-vaughanii and Asteroxylon mackiei) are interpreted in terms of the evolution of the function of vascular bundles in early land plants. The following conclusions can be drawn from these new data: (1) The ratio of the cross-sectional area of the xylem (representing the conducting volume supplying the axis with water) to the xylem perimeter (representing the “contact area” between xylem and parenchyma through which water leaves the xylem and enters the parenchyma) is not constant for Rhynia axes, almost constant for Asteroxylon axes, and different between Rhynia and Asteroxylon. Thus, Bowers hypothesis that the ratio of cross-sectional area of the xylem to xylem perimeter is constant during ontogenetic development is true for Asteroxylon. That this ratio is constant during phylogeny, however, is not supported by our data. (2) The ratio between cross-sectional area of xylem to parenchyma is higher in Asteroxylon than in Rhynia. (3) As predicted by previous computer simulations, the ratio of the xylem perimeter to the axis perimeter plays a major role in determining water transport performance of the transpiring axis. This ratio is constant within ontogeny but is different in Asteroxylon and Rhynia. In Asteroxylon axes, this ratio is about twice as large as in Rhynia axes. (4) Contrary to the expectations, the distance between the outermost layer of the xylem and the transpiring surface, which represents the low-conductivity pathway through the parenchyma, appears not to be a limiting factor for the water transport in axes of Rhynia and Asteroxylon. (5) From the analysis of the geometric parameters, it is evident that Rhynia and Asteroxylon with their distinct stelar geometries represent two different constructional types for which no transitional stages are known.


2019 ◽  
Vol 61 (3) ◽  
pp. 470-480
Author(s):  
Mai Kanazawa ◽  
Yoko Ikeda ◽  
Ryuichi Nishihama ◽  
Shohei Yamaoka ◽  
Nam-Hee Lee ◽  
...  

Abstract Regulation of the stability and the quality of mitochondrial RNA is essential for the maintenance of mitochondrial and cellular functions in eukaryotes. We have previously reported that the eukaryotic poly(A)-specific ribonuclease (PARN) and the prokaryotic poly(A) polymerase encoded by AHG2 and AGS1, respectively, coordinately regulate the poly(A) status and the stability of mitochondrial mRNA in Arabidopsis. Mitochondrial function of PARN has not been reported in any other eukaryotes. To know how much this PARN-based mitochondrial mRNA regulation is conserved among plants, we studied the AHG2 and AGS1 counterparts of the liverwort, Marchantia polymorpha, a member of basal land plant lineage. We found that M. polymorpha has one ortholog each for AHG2 and AGS1, named MpAHG2 and MpAGS1, respectively. Their Citrine-fused proteins were detected in mitochondria of the liverwort. Molecular genetic analysis showed that MpAHG2 is essential and functionally interacts with MpAGS1 as observed in Arabidopsis. A recombinant MpAHG2 protein had a deadenylase activity in vitro. Overexpression of MpAGS1 and the reduced expression of MpAHG2 caused an accumulation of polyadenylated Mpcox1 mRNA. Furthermore, MpAHG2 suppressed Arabidopsis ahg2-1 mutant phenotype. These results suggest that the PARN-based mitochondrial mRNA regulatory system is conserved in land plants.


Sign in / Sign up

Export Citation Format

Share Document