scholarly journals Ecological divergence and hybridization of Neotropical Leishmania parasites

2020 ◽  
Vol 117 (40) ◽  
pp. 25159-25168 ◽  
Author(s):  
Frederik Van den Broeck ◽  
Nicholas J. Savill ◽  
Hideo Imamura ◽  
Mandy Sanders ◽  
Ilse Maes ◽  
...  

The tropical Andes are an important natural laboratory to understand speciation in many taxa. Here we examined the evolutionary history of parasites of the Leishmania braziliensis species complex based on whole-genome sequencing of 67 isolates from 47 localities in Peru. We first show the origin of Andean Leishmania as a clade of near-clonal lineages that diverged from admixed Amazonian ancestors, accompanied by a significant reduction in genome diversity and large structural variations implicated in host–parasite interactions. Within the Andean species, patterns of population structure were strongly associated with biogeographical origin. Molecular clock and ecological niche modeling suggested that the history of diversification of the Andean lineages is limited to the Late Pleistocene and intimately associated with habitat contractions driven by climate change. These results suggest that changes in forestation over the past 150,000 y have influenced speciation and diversity of these Neotropical parasites. Second, genome-scale analyses provided evidence of meiotic-like recombination between Andean and Amazonian Leishmania species, resulting in full-genome hybrids. The mitochondrial genome of these hybrids consisted of homogeneous uniparental maxicircles, but minicircles originated from both parental species. We further show that mitochondrial minicircles—but not maxicircles—show a similar evolutionary pattern to the nuclear genome, suggesting that compatibility between nuclear-encoded mitochondrial genes and minicircle-encoded guide RNA genes is essential to maintain efficient respiration. By comparing full nuclear and mitochondrial genome ancestries, our data expand our appreciation on the genetic consequences of diversification and hybridization in parasitic protozoa.

2019 ◽  
Author(s):  
Frederik Van den Broeck ◽  
Nicholas J. Savill ◽  
Hideo Imamura ◽  
Mandy Sanders ◽  
Ilse Maes ◽  
...  

ABSTRACTThe tropical Andes is an important natural laboratory to understand speciation and diversification in many taxa. Here, we examined the evolutionary history of parasites of the Leishmania braziliensis species complex based on whole genome sequencing of 67 isolates from 47 localities in Peru. We firstly show the origin of near-clonal Andean Leishmania lineages that diverged from admixed Amazonian ancestors, accompanied by a significant reduction in genome diversity and large structural variations implicated in host-parasite interactions. Beside a clear dichotomy between Andean and Amazonian species, patterns of population structure were strongly associated with biogeographical origin. Molecular clock analyses and ecological niche modeling suggested that the history of diversification of the Andean lineages is limited to the Late Pleistocene and intimately associated with habitat contractions driven by climate change. These results support a wider model on trypanosomatid evolution where major parasite lineages emerge through ecological fitting. Second, genome-scale analyses provided evidence of meiotic recombination between Andean and Amazonian Leishmania species, resulting in full-genome hybrids. The mitochondrial genome of these hybrids consisted of homogeneous uniparental maxicircles, but minicircles originated from both parental species, leaving a mosaic ancestry of minicircle-encoded guide RNA genes. We further show that mitochondrial minicircles - but not maxicircles - show a similar evolutionary pattern as the nuclear genome, suggesting that biparental inheritance of minicircles is universal and may be important to alleviate maxicircle-nuclear incompatibilities. By comparing full nuclear and mitochondrial genome ancestries, our data expands our appreciation on the genetic consequences of diversification and hybridization in parasitic protozoa.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 579-585 ◽  
Author(s):  
Volker Knoop ◽  
Michael Unseld ◽  
Joachim Marienfeld ◽  
Petra Brandt ◽  
Sabine Sünkel ◽  
...  

Abstract Several retrotransposon fragments are integrated in the mitochondrial genome of Arabidopsis thaliana. These insertions are derived from all three classes of nuclear retrotransposons, the Tyl/copia, Ty3/gypsy- and non-LTR/LINE-families. Members of the Ty3/gypsy group of elements have not yet been identified in the nuclear genome of Arabidopsis. The varying degrees of similarity with nuclear elements and the dispersed locations of the sequences in the mitochondrial genome suggest numerous independent transfer-insertion events in the evolutionary history of this plant mitochondrial genome. Overall, we estimate remnants of retrotransposons to cover ≥5% of the mitochondrial genome in Arabidopsis.


Genome ◽  
2007 ◽  
Vol 50 (2) ◽  
pp. 234-240 ◽  
Author(s):  
Hirokazu Handa

A linear mitochondrial plasmid is present in some varieties of rapeseed. To elucidate its origin and transmission the author investigated types of mitochondrial genome and the presence of plasmid in 78 rapeseed varieties and landraces in Japan and carried out a comparative analysis using the breeding history of Japanese rapeseed varieties. The mitochondrial genome of rapeseed was classified roughly into 2 types, type I (nap) and type II (cam). Type II rapeseed mitochondria closely resembles that of Brassica rapa , which is a related species of rapeseed. In this study, the author found that all varieties with type II mitochondria originated from interspecific crosses between rapeseed ( B. napus ) and B. rapa. This indicates that type II cytoplasm was introduced to rapeseed through a breeding program. The presence of plasmid was limited to B. rapa landraces and rapeseed varieties that arose by interspecific crosses between B. napus and B. rapa. The results suggest that mitochondrial plasmid is of B. rapa origin and that it has been introduced into rapeseed by interspecific crosses in a modern breeding program, as in the case of the mitochondrial genome. Phylogenetic study of Japanese rapeseed varieties suggests the participation not of the mitochondrial genome but, rather, the nuclear genome for the perpetuation of plasmid in progeny varieties.


2000 ◽  
Vol 64 (4) ◽  
pp. 786-820 ◽  
Author(s):  
C. G. Kurland ◽  
S. G. E. Andersson

SUMMARY The endosymbiotic theory for the origin of mitochondria requires substantial modification. The three identifiable ancestral sources to the proteome of mitochondria are proteins descended from the ancestral α-proteobacteria symbiont, proteins with no homology to bacterial orthologs, and diverse proteins with bacterial affinities not derived from α-proteobacteria. Random mutations in the form of deletions large and small seem to have eliminated nonessential genes from the endosymbiont-mitochondrial genome lineages. This process, together with the transfer of genes from the endosymbiont-mitochondrial genome to nuclei, has led to a marked reduction in the size of mitochondrial genomes. All proteins of bacterial descent that are encoded by nuclear genes were probably transferred by the same mechanism, involving the disintegration of mitochondria or bacteria by the intracellular membranous vacuoles of cells to release nucleic acid fragments that transform the nuclear genome. This ongoing process has intermittently introduced bacterial genes to nuclear genomes. The genomes of the last common ancestor of all organisms, in particular of mitochondria, encoded cytochrome oxidase homologues. There are no phylogenetic indications either in the mitochondrial proteome or in the nuclear genomes that the initial or subsequent function of the ancestor to the mitochondria was anaerobic. In contrast, there are indications that relatively advanced eukaryotes adapted to anaerobiosis by dismantling their mitochondria and refitting them as hydrogenosomes. Accordingly, a continuous history of aerobic respiration seems to have been the fate of most mitochondrial lineages. The initial phases of this history may have involved aerobic respiration by the symbiont functioning as a scavenger of toxic oxygen. The transition to mitochondria capable of active ATP export to the host cell seems to have required recruitment of eukaryotic ATP transport proteins from the nucleus. The identity of the ancestral host of the α-proteobacterial endosymbiont is unclear, but there is no indication that it was an autotroph. There are no indications of a specific α-proteobacterial origin to genes for glycolysis. In the absence of data to the contrary, it is assumed that the ancestral host cell was a heterotroph.


Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1511-1518 ◽  
Author(s):  
Ning Yu ◽  
Michael I Jensen-Seaman ◽  
Leona Chemnick ◽  
Judith R Kidd ◽  
Amos S Deinard ◽  
...  

Abstract Comparison of the levels of nucleotide diversity in humans and apes may provide much insight into the mechanisms of maintenance of DNA polymorphism and the demographic history of these organisms. In the past, abundant mitochondrial DNA (mtDNA) polymorphism data indicated that nucleotide diversity (π) is more than threefold higher in chimpanzees than in humans. Furthermore, it has recently been claimed, on the basis of limited data, that this is also true for nuclear DNA. In this study we sequenced 50 noncoding, nonrepetitive DNA segments randomly chosen from the nuclear genome in 9 bonobos and 17 chimpanzees. Surprisingly, the π value for bonobos is only 0.078%, even somewhat lower than that (0.088%) for humans for the same 50 segments. The π values are 0.092, 0.130, and 0.082% for East, Central, and West African chimpanzees, respectively, and 0.132% for all chimpanzees. These values are similar to or at most only 1.5 times higher than that for humans. The much larger difference in mtDNA diversity than in nuclear DNA diversity between humans and chimpanzees is puzzling. We speculate that it is due mainly to a reduction in effective population size (Ne) in the human lineage after the human-chimpanzee divergence, because a reduction in Ne has a stronger effect on mtDNA diversity than on nuclear DNA diversity.


2020 ◽  
Vol 85 (4) ◽  
pp. 895-901
Author(s):  
Takamitsu Amai ◽  
Tomoka Tsuji ◽  
Mitsuyoshi Ueda ◽  
Kouichi Kuroda

ABSTRACT Mitochondrial dysfunction can occur in a variety of ways, most often due to the deletion or mutation of mitochondrial DNA (mtDNA). The easy generation of yeasts with mtDNA deletion is attractive for analyzing the functions of the mtDNA gene. Treatment of yeasts with ethidium bromide is a well-known method for generating ρ° cells with complete deletion of mtDNA from Saccharomyces cerevisiae. However, the mutagenic effects of ethidium bromide on the nuclear genome cannot be excluded. In this study, we developed a “mito-CRISPR system” that specifically generates ρ° cells of yeasts. This system enabled the specific cleavage of mtDNA by introducing Cas9 fused with the mitochondrial target sequence at the N-terminus and guide RNA into mitochondria, resulting in the specific generation of ρ° cells in yeasts. The mito-CRISPR system provides a concise technology for deleting mtDNA in yeasts.


2021 ◽  
Vol 22 (9) ◽  
pp. 4594
Author(s):  
Andrea Stoccoro ◽  
Fabio Coppedè

Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.


2020 ◽  
Author(s):  
Jingping Fang ◽  
Andrew Wood ◽  
Youqiang Chen ◽  
Jingjing Yue ◽  
Ray Ming

Abstract Background: The safety of genetically transformed plants remains a subject of scrutiny. Genomic variants in PRSV resistant transgenic papaya will provide evidence to rationally address such concerns. Results: In this study, a total of more than 74 million Illumina reads for progenitor ‘Sunset’ were mapped onto transgenic papaya ‘SunUp’ reference genome. 310,364 single nucleotide polymorphisms (SNPs), 34,071 small Inserts/deletions (InDels) and 1,200 large structural variations (SVs) were detected between ‘Sunset’ and ‘SunUp’. Those variations have an uneven distribution across nine chromosomes in papaya. Only 0.27% of mutations were predicted to be high-impact mutations. ATP-related categories were highly enriched among these high-impact genes. The SNP mutation rate was about 8.4×10-4 per site, comparable with the rate induced by spontaneous mutation over numerous generations. The transition-to-transversion ratio was 1.439 and the predominant mutations were C/G to T/A transitions. Spontaneous mutations were the leading cause of SNPs in transgenic papaya ‘SunUp’. A total of 3,430 nuclear plastid DNA (NUPT) and 2,764 nuclear mitochondrial DNA (NUMT) junction sites have been found in ‘SunUp’, which is proportionally higher than the predicted total NUPT and NUMT junction sites in ‘Sunset’ (3,346 and 2,745, respectively). Among all nuclear organelle DNA (norgDNA) junction sites, 96% of junction sites were shared by ‘SunUp’ and ‘Sunset’. The average identity between ‘SunUp’ specific norgDNA and corresponding organelle genomes was higher than that of norgDNA shared by ‘SunUp’ and ‘Sunset’. Six ‘SunUp’ organelle-like borders of transgenic insertions were nearly identical to corresponding sequences in organelle genomes (98.18~100%). None of the paired-end spans of mapped ‘Sunset’ reads were elongated by any ‘SunUp’ transformation plasmid derived inserts. Significant amounts of DNA were transferred from organelles to the nuclear genome during bombardment, including the six flanking sequences of the three transgenic insertions.Conclusions: Comparative whole-genome analyses between ‘SunUp’ and ‘Sunset’ provide a reliable estimate of genome-wide variations and evidence of organelle-to-nucleus transfer of DNA associated with biolistic transformation.


Sign in / Sign up

Export Citation Format

Share Document