scholarly journals Elevated dust depositions in West Asia linked to ocean–atmosphere shifts during North Atlantic cold events

2020 ◽  
Vol 117 (31) ◽  
pp. 18272-18277 ◽  
Author(s):  
Reza Safaierad ◽  
Mahyar Mohtadi ◽  
Bernd Zolitschka ◽  
Yusuke Yokoyama ◽  
Christoph Vogt ◽  
...  

Rapid North Atlantic cooling events during the last deglaciation caused atmospheric reorganizations on global and regional scales. Their impact on Asian climate has been investigated for monsoonal domains, but remains largely unknown in westerly wind-dominated semiarid regions. Here we generate a dust record from southeastern Iran spanning the period 19 to 7 cal. ka B.P. We find a direct link between frequent occurrences of dust plumes originating from the Arabian Peninsula and North Africa and rapid southward shifts of the westerlies associated with changes of the winter stationary waves during Heinrich Stadial 1, the Younger Dryas, the Preboreal Oscillation, and the 8.2-ka event. Dust input rises and falls abruptly at the transitions into and out of these cooling events, which we attribute to changes in the ocean circulation strength that are modulated by the North Atlantic winter sea-ice cover. Our findings reveal that waxing and waning of North American ice sheets have a stronger influence than those of European ice sheets on the winter climate over West Asia.

2019 ◽  
Vol 15 (4) ◽  
pp. 1621-1646
Author(s):  
Heather J. Andres ◽  
Lev Tarasov

Abstract. Abrupt climate shifts of large amplitudes were common features of the Earth's climate as it transitioned into and out of the last full glacial state approximately 20 000 years ago, but their causes are not yet established. Midlatitude atmospheric dynamics may have played an important role in these climate variations through their effects on heat and precipitation distributions, sea ice extent, and wind-driven ocean circulation patterns. This study characterizes deglacial winter wind changes over the North Atlantic (NAtl) in a suite of transient deglacial simulations using the PlaSim Earth system model (run at T42 resolution) and the TraCE-21ka (T31) simulation. Though driven with yearly updates in surface elevation, we detect multiple instances of NAtl jet transitions in the PlaSim simulations that occur within 10 simulation years and a sensitivity of the jet to background climate conditions. Thus, we suggest that changes to the NAtl jet may play an important role in abrupt glacial climate changes. We identify two types of simulated wind changes over the last deglaciation. Firstly, the latitude of the NAtl eddy-driven jet shifts northward over the deglaciation in a sequence of distinct steps. Secondly, the variability in the NAtl jet gradually shifts from a Last Glacial Maximum (LGM) state with a strongly preferred jet latitude and a restricted latitudinal range to one with no single preferred latitude and a range that is at least 11∘ broader. These changes can significantly affect ocean circulation. Changes to the position of the NAtl jet alter the location of the wind forcing driving oceanic surface gyres and the limits of sea ice extent, whereas a shift to a more variable jet reduces the effectiveness of the wind forcing at driving surface ocean transports. The processes controlling these two types of changes differ on the upstream and downstream ends of the NAtl eddy-driven jet. On the upstream side over eastern North America, the elevated ice sheet margin acts as a barrier to the winds in both the PlaSim simulations and the TraCE-21ka experiment. This constrains both the position and the latitudinal variability in the jet at LGM, so the jet shifts in sync with ice sheet margin changes. In contrast, the downstream side over the eastern NAtl is more sensitive to the thermal state of the background climate. Our results suggest that the presence of an elevated ice sheet margin in the south-eastern sector of the North American ice complex strongly constrains the deglacial position of the jet over eastern North America and the western North Atlantic as well as its variability.


2020 ◽  
Author(s):  
Andrea Burke ◽  
Rosanna Greenop ◽  
James Rae ◽  
Rhian Rees-Owen ◽  
Paula Reimer ◽  
...  

<p>Paleoclimate records from the North Atlantic show some of the most iconic signals of abrupt climate change during the ice ages. Here we use radiocarbon as a tracer of ocean circulation and air-sea gas exchange to investigate potential mechanisms for the abrupt climate changes seen in the North Atlantic over the last deglaciation. We have created a stack of North Atlantic surface radiocarbon reservoir ages over the past 20,000 years, using new synchronized age models from thirteen sediment cores refined with thorium normalization between tie-points. This stack shows consistent and large reservoir age increases of more than 1000 years from the LGM into HS1, dropping abruptly back to approximately modern reservoir ages before the onset of the Bolling-Allerod. We use the intermediate complexity earth system model cGENIE to investigate the potential drivers of these reservoir age changes. We find that sea ice, circulation and CO<sub>2</sub> all play important roles in setting the reservoir age. We use these coherently dated records to revisit the sequence and timing of climatic events during HS1 and the last deglaciation, and show that Laurentide Heinrich Events are a response to stadial conditions, rather than their root cause.</p>


2019 ◽  
Vol 32 (13) ◽  
pp. 3917-3940 ◽  
Author(s):  
William H. G. Roberts ◽  
Camille Li ◽  
Paul J. Valdes

Abstract Stationary waves describe the persistent meanders in the west–east flow of the extratropical atmosphere. Here, changes in stationary waves caused by ice sheets over North America are examined and the underlying mechanisms are discussed. Three experiment sets are presented showing the stationary wave response to the albedo or topography of ice sheets, as well as the albedo and topography in combination, as the forcings evolve from 21 to 6 ka. It is found that although the wintertime stationary waves have the largest amplitude, changes due to an ice sheet are equally large in summer and winter. In summer, ice sheet albedo is the dominant cause of changes: topography alone gives an opposite response to realistic ice sheets including albedo and topography. In winter, over the Atlantic, stationary wave changes are due to the ice sheet topography; over the Pacific, they are due to the persistence of summertime changes, mediated by changes in the ocean circulation. It is found that the response of stationary waves over the last deglaciation echoes the above conclusions, with no evidence of abrupt shifts in atmospheric circulation. The response linearly weakens as the albedo and height decrease from 21 to 10 ka. As potential applications, the seasonal cycle over Greenland is shown to be sensitive primarily to changes in summer climate caused by the stationary waves; the annual mean circulation over the North Pacific is found to result from summertime, albedo-forced, stationary wave effects persisting throughout the year because of ocean dynamics.


2020 ◽  
Vol 33 (17) ◽  
pp. 7455-7478
Author(s):  
Nanxuan Jiang ◽  
Qing Yan ◽  
Zhiqing Xu ◽  
Jian Shi ◽  
Ran Zhang

AbstractTo advance our knowledge of the response of midlatitude westerlies to various external forcings, we investigate the meridional shift of midlatitude westerlies over arid central Asia (ACA) during the past 21 000 years, which experienced more varied forcings than the present day based on a set of transient simulations. Our results suggest that the evolution of midlatitude westerlies over ACA and driving factors vary with time and across seasons. In spring, the location of midlatitude westerlies over ACA oscillates largely during the last deglaciation, driven by meltwater fluxes and continental ice sheets, and then shows a long-term equatorward shift during the Holocene controlled by orbital insolation. In summer, orbital insolation dominates the meridional shift of midlatitude westerlies, with poleward and equatorward migration during the last deglaciation and the Holocene, respectively. From a thermodynamic perspective, variations in zonal winds are linked with the meridional temperature gradient based on the thermal wind relationship. From a dynamic perspective, variations in midlatitude westerlies are mainly induced by anomalous sea surface temperatures over the Indian Ocean through the Matsuno–Gill response and over the North Atlantic Ocean by the propagation of Rossby waves, or both, but their relative importance varies across forcings. Additionally, the modeled meridional shift of midlatitude westerlies is broadly consistent with geological evidence, although model–data discrepancies still exist. Overall, our study provides a possible scenario for a meridional shift of midlatitude westerlies over ACA in response to various external forcings during the past 21 000 years and highlights important roles of both the Indian Ocean and the North Atlantic Ocean in regulating Asian westerlies, which may shed light on the behavior of westerlies in the future.


Geology ◽  
2021 ◽  
Author(s):  
J.L. Bernal-Wormull ◽  
A. Moreno ◽  
C. Pérez-Mejías ◽  
M. Bartolomé ◽  
A. Aranburu ◽  
...  

Major disruptions in the North Atlantic circulation during the last deglaciation triggered a series of climate feedbacks that influenced the course of Termination I, suggesting an almost synchronous response in the ocean-atmosphere system. We present a replicated δ18O stalagmite record from Ostolo cave in the northern Iberian Peninsula with a robust chronological framework that continuously covers the last deglaciation (18.5–10.5 kyr B.P.). The Ostolo δ18O record, unlike other speleothem records in the region that were related to humidity changes, closely tracks the well-known high-latitude temperature evolution, offering important insights into the structure of the last deglaciation in the Northern Hemisphere. In addition, this new record is accompanied by a clear signal of the expected cooling events associated with the deglacial disruptions in North Atlantic deep convection during Heinrich event 1.


1990 ◽  
Vol 14 ◽  
pp. 32-38 ◽  
Author(s):  
Kerry H. Cook

This paper discusses some modeling results that indicate how the atmospheric response to the topography of the continental ice of the Last Glacial Maximum (LGM) may be related to the cold North Atlantic Ocean of that time. Broccoli and Manabe (1987) used a three-dimensional general circulation model (GCM) of the atmosphere coupled with a fixed-depth, static ocean mixed-layer model with ice-age boundary conditions to investigate the individual influences of the CLIMAP ice sheets, snow-free land albedos, and reduced atmospheric CO2 concentrations. They found that the ice sheets are the most influential of the ice-age boundary conditions in modifying the northern hemisphere climate, and that the presence of continental ice sheets alone leads to cooling over the North Atlantic Ocean. One approach for extending these GCM results is to consider the stationary waves generated by the ice sheets. Cook and Held (1988) showed that a linearized, steady-state, primitive equation model can give a reasonable simulation of the GCM’s stationary waves forced by the Laurentide ice sheet. The linear model analysis suggests that the mechanical effect of the changed slope of the surface, and not changes in the diabatic heating (e.g. the high surface albedos) or time-dependent transports that necessarily accompany the ice sheet in the GCM, is largely responsible for the ice sheet’s influence. To obtain the ice-age stationary-wave simulation, the linear model must be linearized about the zonal mean fields from the GCM’s ice-age climate. This is the case because the proximity of the cold polar air to the region of adiabatic heating on the downslope of the Laurentide ice sheet is an important factor in determining the stationary waves. During the ice age, cold air can be transported southward to balance this downslope heating by small perturbations in the meridional wind, consistent with linear theory. Since the meridional temperature gradient is more closely related to the surface albedo (ice extent) than to the ice volume, this suggests a mechanism by which changes in the stationary waves and, therefore, their cooling influence at low levels over the North Atlantic Ocean, can occur on time scales faster than those associated with large changes in continental ice volume.


Sign in / Sign up

Export Citation Format

Share Document