scholarly journals Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion

2020 ◽  
Vol 117 (50) ◽  
pp. 32105-32113 ◽  
Author(s):  
Ruochen Zang ◽  
James Brett Case ◽  
Eylan Yutuc ◽  
Xiucui Ma ◽  
Sheng Shen ◽  
...  

Cholesterol 25-hydroxylase (CH25H) is an interferon (IFN)-stimulated gene that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an IFN-stimulated gene screen against vesicular stomatitis virus (VSV)-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of SARS-CoV-2 replication. Internalized 25HC accumulates in the late endosomes and potentially restricts SARS-CoV-2 spike protein catalyzed membrane fusion via blockade of cholesterol export. Our results highlight one of the possible antiviral mechanisms of 25HC and provide the molecular basis for its therapeutic development.

Author(s):  
Ruochen Zang ◽  
James Brett Case ◽  
Maria Florencia Gomez Castro ◽  
Zhuoming Liu ◽  
Qiru Zeng ◽  
...  

AbstractCholesterol 25-hydroxylase (CH25H) is an interferon-stimulated gene (ISG) that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an ISG screen against VSV-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of virus replication. Mechanistically, internalized 25HC accumulates in the late endosomes and blocks cholesterol export, thereby restricting SARS-CoV-2 spike protein catalyzed membrane fusion. Our results highlight a unique antiviral mechanism of 25HC and provide the molecular basis for its possible therapeutic development.


2014 ◽  
Vol 89 (1) ◽  
pp. 535-544 ◽  
Author(s):  
Lita Murphy ◽  
Mariana Varela ◽  
Sophie Desloire ◽  
Najate Ftaich ◽  
Claudio Murgia ◽  
...  

ABSTRACTBone marrow stromal cell antigen 2 (BST2) is a cellular restriction factor with a broad antiviral activity. In sheep, theBST2gene is duplicated into two paralogs termedoBST2AandoBST2B. oBST2A impedes viral exit of the Jaagsiekte sheep retroviruses (JSRV), most probably by retaining virions at the cell membrane, similar to the “tethering” mechanism exerted by human BST2. In this study, we provide evidence that unlike oBST2A, oBST2B is limited to the Golgi apparatus and disrupts JSRV envelope (Env) trafficking by sequestering it. In turn, oBST2B leads to a reduction in Env incorporation into viral particles, which ultimately results in the release of virions that are less infectious. Furthermore, the activity of oBST2B does not seem to be restricted to retroviruses, as it also acts on vesicular stomatitis virus glycoproteins. Therefore, we suggest that oBST2B exerts antiviral activity using a mechanism distinct from the classical tethering restriction observed for oBST2A.IMPORTANCEBST2 is a powerful cellular restriction factor against a wide range of enveloped viruses. Sheep possess two paralogs of theBST2gene calledoBST2AandoBST2B. JSRV, the causative agent of a transmissible lung cancer of sheep, is known to be restricted by oBST2A. In this study, we show that unlike oBST2A, oBST2B impairs the normal cellular trafficking of JSRV envelope glycoproteins by sequestering them within the Golgi apparatus. We also show that oBST2B decreases the incorporation of envelope glycoprotein into JSRV viral particles, which in turn reduces virion infectivity. In conclusion, oBST2B exerts a novel antiviral activity that is distinct from those of BST2 proteins of other species.


1985 ◽  
Vol 101 (1) ◽  
pp. 60-65 ◽  
Author(s):  
M Ono ◽  
K Mifune ◽  
A Yoshimura ◽  
S Ohnishi ◽  
M Kuwano

A mutant (MO-5) resistant to monensin (an ionophoric antibiotic) derived from the mouse Balb/3T3 cell line, was a poor host for vesicular stomatitis virus (VSV) or semliki forest virus (SFV) multiplication. The yield of VSV particles in MO-5 is one 100-fold reduced as is VSV-dependent RNA synthesis. In contrast to a pH-remedial mutant, the abortive production of infectious VSV particles in MO-5 cells was not restored by low pH treatment. The pH values in the endosome and the lysosome of MO-5 cells were 5.2 and 5.4, respectively, values that were comparable to the pH value in Balb/3T3 cells. Assays with [3H]uridine-labeled VSV indicated similar binding of VSV in MO-5: percoll gradient centrifugation analysis of [35S]methionine-labeled VSV-infected Balb/3T3 showed accumulation of VSV in the lysosome fraction 20 min after VSV infection, whereas VSV can be found mainly in endosome/Golgi fraction of MO-5 cells after 40 to 60 min on the percoll gradients. Degradation of [35S]methionine-labeled VSV was observed at a significant rate in Balb/3T3 cells, but not in MO-5 cells. The monensin-resistant somatic cell may thus provide a genetic route to study the mechanism of endocytosis or transport of enveloped viruses.


2015 ◽  
Vol 523 (11) ◽  
pp. 1639-1663 ◽  
Author(s):  
Nathan A. Mundell ◽  
Kevin T. Beier ◽  
Y. Albert Pan ◽  
Sylvain W. Lapan ◽  
Didem Göz Aytürk ◽  
...  

2003 ◽  
Vol 278 (16) ◽  
pp. 13789-13794 ◽  
Author(s):  
Fabiana A. Carneiro ◽  
Fausto Stauffer ◽  
Carla S. Lima ◽  
Maria A. Juliano ◽  
Luiz Juliano ◽  
...  

2004 ◽  
Vol 78 (20) ◽  
pp. 10920-10926 ◽  
Author(s):  
David A. Coil ◽  
A. Dusty Miller

ABSTRACT The envelope protein from vesicular stomatitis virus (VSV) has become an important tool for gene transfer and gene therapy. It is widely used mainly because of its ability to mediate virus entry into all cell types tested to date. Consistent with the broad tropism of the virus, the receptor for VSV is thought to be a ubiquitous membrane lipid, phosphatidylserine (PS). However, the evidence for this hypothesis is indirect and incomplete. Here, we have examined the potential interaction of VSV and PS at the plasma membrane in more detail. Measurements of cell surface levels of PS show a wide range across cell types from different organisms. We demonstrate that there is no correlation between the cell surface PS levels and VSV infection or binding. We also demonstrate that an excess of annexin V, which binds specifically and tightly to PS, does not inhibit infection or binding by VSV. While the addition of PS to cells does allow increased virus entry, we show that this effect is not specific to the VSV envelope. We conclude that PS is not the cell surface receptor for VSV, although it may be involved in a postbinding step of virus entry.


2002 ◽  
Vol 76 (23) ◽  
pp. 12300-12311 ◽  
Author(s):  
E. Jeetendra ◽  
Clinton S. Robison ◽  
Lorraine M. Albritton ◽  
Michael A. Whitt

ABSTRACT Recently we showed that the membrane-proximal stem region of the vesicular stomatitis virus (VSV) G protein ectodomain (G stem [GS]), together with the transmembrane and cytoplasmic domains, was sufficient to mediate efficient VSV budding (C. S. Robison and M. A. Whitt, J. Virol. 74:2239-2246, 2000). Here, we show that GS can also potentiate the membrane fusion activity of heterologous viral fusion proteins when GS is coexpressed with those proteins. For some fusion proteins, there was as much as a 40-fold increase in syncytium formation when GS was coexpressed compared to that seen when the fusion protein was expressed alone. Fusion potentiation by GS was not protein specific, since it occurred with both pH-dependent as well as pH-independent fusion proteins. Using a recombinant vesicular stomatitis virus encoding GS that contained an N-terminal hemagglutinin (HA) tag (GSHA virus), we found that the GSHA virus bound to cells as well as the wild-type virus did at pH 7.0; however, the GSHA virus was noninfectious. Analysis of cells expressing GSHA in a three-color membrane fusion assay revealed that GSHA could induce lipid mixing but not cytoplasmic mixing, indicating that GS can induce hemifusion. Treatment of GSHA virus-bound cells with the membrane-destabilizing drug chlorpromazine rescued the hemifusion block and allowed entry and subsequent replication of GSHA virus, demonstrating that GS-mediated hemifusion was a functional intermediate in the membrane fusion pathway. Using a series of truncation mutants, we also determined that only 14 residues of GS, together with the VSV G transmembrane and cytoplasmic tail, were sufficient for fusion potentiation. To our knowledge, this is the first report which shows that a small domain of one viral glycoprotein can promote the fusion activity of other, unrelated viral glycoproteins.


Sign in / Sign up

Export Citation Format

Share Document