scholarly journals Dynamin deficiency causes insulin secretion failure and hyperglycemia

2021 ◽  
Vol 118 (32) ◽  
pp. e2021764118
Author(s):  
Fan Fan ◽  
Yumei Wu ◽  
Manami Hara ◽  
Adam Rizk ◽  
Chen Ji ◽  
...  

Pancreatic β cells operate with a high rate of membrane recycling for insulin secretion, yet endocytosis in these cells is not fully understood. We investigate this process in mature mouse β cells by genetically deleting dynamin GTPase, the membrane fission machinery essential for clathrin-mediated endocytosis. Unexpectedly, the mice lacking all three dynamin genes (DNM1, DNM2, DNM3) in their β cells are viable, and their β cells still contain numerous insulin granules. Endocytosis in these β cells is severely impaired, resulting in abnormal endocytic intermediates on the plasma membrane. Although insulin granules are abundant, their release upon glucose stimulation is blunted in both the first and second phases, leading to hyperglycemia and glucose intolerance in mice. Dynamin triple deletion impairs insulin granule exocytosis and decreases intracellular Ca2+ responses and granule docking. The docking defect is correlated with reduced expression of Munc13-1 and RIM1 and reorganization of cortical F-actin in β cells. Collectively, these findings uncover the role of dynamin in dense-core vesicle endocytosis and secretory capacity. Insulin secretion deficiency in the absence of dynamin-mediated endocytosis highlights the risk of impaired membrane trafficking in endocrine failure and diabetes pathogenesis.

2005 ◽  
Vol 185 (1) ◽  
pp. 57-67 ◽  
Author(s):  
L B Hays ◽  
B Wicksteed ◽  
Y Wang ◽  
J F McCuaig ◽  
L H Philipson ◽  
...  

Several proteins play a role in the mechanism of insulin exocytosis. However, these ‘exocytotic proteins’ have yet to account for the regulated aspect of insulin exocytosis, and other factors are involved. In pancreatic exocrine cells, the intralumenal zymogen granule protein, syncollin, is required for efficient regulated exocytosis, but it is not known whether intragranular peptides similarly influence regulated insulin exocytosis. Here, this issue has been addressed using expression of syncollin and a syncollin-green fluorescent protein (syncollinGFP) chimera in rat islet β-cells as experimental tools. Syncollin is not normally expressed in β-cells but adenoviral-mediated expression of both syncollin and syncollinGFP indicated that these were specifically targeted to the lumen of β-granules. Syncollin expression in isolated rat islets had no effect on basal insulin secretion but significantly inhibited regulated insulin secretion stimulated by glucose (16.7 mM), glucagon-like peptide-1 (GLP-1) (10 nM) and glyburide (5μM). Consistent with specific localization of syncollin to β-granules, constitutive secretion was unchanged by syncollin expression in rat islets. Syncollin-mediated inhibition of insulin secretion was not due to inadequate insulin production. Moreover, secretagogue-induced increases in cytosolic intracellular Ca2+, which is a prerequisite for triggering insulin exocytosis, were unaffected in syncollin-expressing islets. Therefore, syncollin was most likely acting downstream of secondary signals at the level of insulin exocytosis. Thus, syncollin expression in β-cells has highlighted the importance of intralumenal β-granule peptide factors playing a role in the control of insulin exocytosis. In contrast to syncollin, syncollinGFP had no effect on insulin secretion, underlining its usefulness as a ‘fluorescent tag’ to track β-granule transport and exocytosis in real time.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1201 ◽  
Author(s):  
Israel Martínez-Navarro ◽  
Raúl Díaz-Molina ◽  
Angel Pulido-Capiz ◽  
Jaime Mas-Oliva ◽  
Ismael Luna-Reyes ◽  
...  

Human islet amyloid polypeptide (hIAPP) corresponds to a 37-residue hormone present in insulin granules that maintains a high propensity to form β-sheet structures during co-secretion with insulin. Previously, employing a biomimetic approach, we proposed a panel of optimized IAPP sequences with only one residue substitution that shows the capability to reduce amyloidogenesis. Taking into account that specific membrane lipids have been considered as a key factor in the induction of cytotoxicity, in this study, following the same design strategy, we characterize the effect of a series of lipids upon several polypeptide domains that show the highest aggregation propensity. The characterization of the C-native segment of hIAPP (residues F23-Y37), together with novel variants F23R and I26A allowed us to demonstrate an effect upon the formation of β-sheet structures. Our results suggest that zwitterionic phospholipids promote adsorption of the C-native segments at the lipid-interface and β-sheet formation with the exception of the F23R variant. Moreover, the presence of cholesterol did not modify this behavior, and the β-sheet structural transitions were not registered when the N-terminal domain of hIAPP (K1-S20) was characterized. Considering that insulin granules are enriched in phosphatidylserine (PS), the property of lipid vesicles containing negatively charged lipids was also evaluated. We found that these types of lipids promote β-sheet conformational transitions in both the C-native segment and the new variants. Furthermore, these PS/peptides arrangements are internalized in Langerhans islet β-cells, localized in the endoplasmic reticulum, and trigger critical pathways such as unfolded protein response (UPR), affecting insulin secretion. Since this phenomenon was associated with the presence of cytotoxicity on Langerhans islet β-cells, it can be concluded that the anionic lipid environment and degree of solvation are critical conditions for the stability of segments with the propensity to form β-sheet structures, a situation that will eventually affect the structural characteristics and stability of IAPP within insulin granules, thus modifying the insulin secretion.


2001 ◽  
Vol 360 (2) ◽  
pp. 431-439 ◽  
Author(s):  
Christina M. BUCHANAN ◽  
Anthony R. J. PHILLIPS ◽  
Garth J. S. COOPER

Pancreatic islet β-cells secrete the hormones insulin, amylin and pancreastatin. To search for further β-cell hormones, we purified peptides from secretory granules isolated from cultured murine βTC6-F7 β-cells. We identified a 34-amino-acid peptide (3948Da), corresponding to Asp69–Leu102 of the proinsulin-like growth factor II E-peptide, which we have termed ‘preptin’. Preptin, is present in islet β-cells and undergoes glucose-mediated co-secretion with insulin. Synthetic preptin increases insulin secretion from glucose-stimulated βTC6-F7 cells in a concentration-dependent and saturable manner. Preptin infusion into the isolated, perfused rat pancreas increases the second phase of glucose-mediated insulin secretion by 30%, while anti-preptin immunoglobulin infusion decreases the first and second phases of insulin secretion by 29 and 26% respectively. These findings suggest that preptin is a physiological amplifier of glucose-mediated insulin secretion.


2002 ◽  
Vol 283 (5) ◽  
pp. E880-E888 ◽  
Author(s):  
Gordon C. Yaney ◽  
Jamison M. Fairbanks ◽  
Jude T. Deeney ◽  
Helen M. Korchak ◽  
Keith Tornheim ◽  
...  

Culturing clonal β-cells (HIT-T15) overnight in the presence of phorbol ester [phorbol myristate acetate (PMA)] enhanced insulin secretion while causing downregulation of some protein kinase C (PKC) isoforms and most PKC activity. We show here that this enhanced secretion required the retention of PMA in the cell. Hence, it could not be because of long-lived phosphorylation of cellular substrates by the isoforms that were downregulated, namely PKC-α, -βII, and -ε, but could be because of the continued activation of the two remaining diacylglycerol-sensitive isoforms δ and μ. The enhanced secretion did not involve changes in glucose metabolism, cell membrane potential, or intracellular Ca2+handling, suggesting a distal effect. PMA washout caused the loss of the enhanced response, but secretion was then stimulated by acute readdition of PMA or bombesin. The magnitude of this restimulation appeared dependent on the mass of PKC-α, which was rapidly resynthesized during PMA washout. Therefore, stimulation of insulin secretion by PMA, and presumably by endogenous diacylglycerol, involves the activation of PKC isoforms δ and/or μ, and also PKC-α.


2014 ◽  
Vol 307 (9) ◽  
pp. E800-E812 ◽  
Author(s):  
Veronika Leiss ◽  
Katarina Flockerzie ◽  
Ana Novakovic ◽  
Michaela Rath ◽  
Annika Schönsiegel ◽  
...  

Bordetella pertussis toxin (PTx), also known as islet-activating protein, induces insulin secretion by ADP-ribosylation of inhibitory G proteins. PTx-induced insulin secretion may result either from inactivation of Gαo proteins or from combined inactivation of Gαo, Gαi1, Gαi2, and Gαi3 isoforms. However, the specific role of Gαi2 in pancreatic β-cells still remains unknown. In global (Gαi2−/−) and β-cell-specific (Gαi2βcko) gene-targeted Gαi2 mouse models, we studied glucose homeostasis and islet functions. Insulin secretion experiments and intracellular Ca2+ measurements were used to characterize Gαi2 function in vitro. Gαi2−/− and Gαi2βcko mice showed an unexpected metabolic phenotype, i.e., significantly lower plasma insulin levels upon intraperitoneal glucose challenge in Gαi2−/− and Gαi2βcko mice, whereas plasma glucose concentrations were unchanged in Gαi2−/− but significantly increased in Gαi2βcko mice. These findings indicate a novel albeit unexpected role for Gαi2 in the expression, turnover, and/or release of insulin from islets. Detection of insulin secretion in isolated islets did not show differences in response to high (16 mM) glucose concentrations between control and β-cell-specific Gαi2-deficient mice. In contrast, the two- to threefold increase in insulin secretion evoked by l-arginine or l-ornithine (in the presence of 16 mM glucose) was significantly reduced in islets lacking Gαi2. In accord with a reduced level of insulin secretion, intracellular calcium concentrations induced by the agonistic amino acid l-arginine did not reach control levels in β-cells. The presented analysis of gene-targeted mice provides novel insights in the role of β-cell Gαi2 showing that amino acid-induced insulin-release depends on Gαi2.


2007 ◽  
Vol 192 (1) ◽  
pp. 159-168 ◽  
Author(s):  
J M A Hannan ◽  
Lamin Marenah ◽  
Liaquat Ali ◽  
Begum Rokeya ◽  
Peter R Flatt ◽  
...  

Asparagus racemosus root has previously been reported to reduce blood glucose in rats and rabbits. In the present study, the effects of the ethanol extract and five partition fractions of the root of A. racemosus were evaluated on insulin secretion together with exploration of their mechanisms of action. The ethanol extract and each of the hexane, chloroform and ethyl acetate partition fractions concentration-dependently stimulated insulin secretion in isolated perfused rat pancreas, isolated rat islet cells and clonal β-cells. The stimulatory effects of the ethanol extract, hexane, chloroform and ethyl acetate partition fractions were potentiated by glucose, 3-isobutyl-1-methyl xanthine IBMX, tolbutamide and depolarizing concentration of KCl. Inhibition of A. racemosus-induced insulin release was observed with diazoxide and verapamil. Ethanol extract and five fractions increased intracellular Ca2+, consistent with the observed abolition of insulin secretory effects under Ca2+-free conditions. These findings reveal that constituents of A. racemosus root extracts have wide-ranging stimulatoryeffects on physiological insulinotropic pathways. Future work assessing the use of this plant as a source of active components may provide new opportunities for diabetes therapy.


2010 ◽  
Vol 38 (1) ◽  
pp. 205-208 ◽  
Author(s):  
Angela McDonald ◽  
Sarah Fogarty ◽  
Isabelle Leclerc ◽  
Elaine V. Hill ◽  
D. Grahame Hardie ◽  
...  

Glucose-stimulated insulin secretion from pancreatic β-cells requires the kinesin-1/Kif5B-mediated transport of insulin granules along microtubules. 5′-AMPK (5′-AMP-activated protein kinase) is a heterotrimeric serine/threonine kinase which is activated in β-cells at low glucose concentrations, but inhibited as glucose levels increase. Active AMPK blocks glucose-stimulated insulin secretion and the recruitment of insulin granules to the cell surface, suggesting motor proteins may be targets for this kinase. While both kinesin-1/Kif5B and KLC1 (kinesin light chain-1) contain consensus AMPK phosphorylation sites (Thr693 and Ser520, respectively) only recombinant GST (glutathione transferase)–KLC1 was phosphorylated by purified AMPK in vitro. To test the hypothesis that phosphorylation at this site may modulate kinesin-1-mediated granule movement, we developed an approach to study the dynamics of all the resolvable granules within a cell in three dimensions. This cell-wide approach revealed that the number of longer excursions (>10 μm) increased significantly in response to elevated glucose concentration (30 versus 3 mM) in control MIN6 β-cells. However, similar changes were seen in cells overexpressing wild-type KLC1, phosphomimetic (S517D/S520D) or non-phosphorylatable (S517A/S520A) mutants of KLC1. Thus, changes in the phosphorylation state of KLC1 at Ser517/Ser520 seem unlikely to affect motor function.


2007 ◽  
Vol 196 (2) ◽  
pp. 377-384 ◽  
Author(s):  
Dan-Dan Feng ◽  
Yu-Feng Zhao ◽  
Zi-Qiang Luo ◽  
Damien J Keating ◽  
Chen Chen

Free fatty acids (FFAs) regulate insulin secretion in a complex pattern and induce pancreatic β-cell dysfunction in type 2 diabetes. Voltage-dependent Ca2+ channels (VDCC) in β-cells play a major role in regulating insulin secretion. The aim of present study is to clarify the action of the FFA, linoleic acid, on VDCC in β-cells. The VDCC current in primary cultured rat β-cells were recorded under nystatin-perforated whole-cell recording configuration. The VDCC was identified as high-voltage-gated Ca2+ channels due to there being no difference in current amplitude under holding potential between −70 and −40 mV. Linoleic acid (10 μM) significantly inhibited VDCC currents in β-cells, an effect which was fully reversible upon washout. Methyl-linoleic acid, which does not activate G protein coupled receptor (GPR)40, neither did alter VDCC current in rat β-cells nor did influence linoleic acid-induced inhibition of VDCC currents. Linoleic acid-induced inhibition of VDCC current was not blocked by preincubation of β-cells with either the specific protein kinase A (PKA) inhibitor, H89, or the PKC inhibitor, chelerythrine. However, pretreatment of β-cells with thapsigargin, which depletes intracellular Ca2+ stores, completely abolished linoleic acid-induced decrease in VDCC current. Measurement of intracellular Ca2+ concentration ([Ca2+]i) illustrated that linoleic acid induced an increase in [Ca2+]i and that thapsigargin pretreatment inhibited this increase. Methyl-linoleic acid neither did induce increase in [Ca2+]i nor did it block linoleic acid-induced increase in [Ca2+]i. These results suggest that linoleic acid stimulates Ca2+ release from intracellular Ca2+ stores and inhibits VDCC currents in rat pancreatic β-cells via Ca2+-induced inactivation of VDCC.


2007 ◽  
Vol 196 (3) ◽  
pp. 573-581 ◽  
Author(s):  
Jean-Claude Henquin ◽  
Myriam Nenquin ◽  
Andras Szollosi ◽  
Atsutaka Kubosaki ◽  
Abner Louis Notkins

Islet antigen-2 (IA-2 or ICA 512) and IA-2β (or phogrin) are major autoantigens in type 1 diabetes. They are located in dense core secretory vesicles including insulin granules, but their role in β-cell function is unclear. Targeted disruption of either IA-2 or IA-2β, or both, impaired glucose tolerance, an effect attributed to diminution of insulin secretion. In this study, we therefore characterized the dynamic changes in cytosolic Ca2+([Ca2+]c) and insulin secretion in islets from IA-2/IA-2β double knockout (KO) mice. High glucose (15 mM) induced biphasic insulin secretion in IA-2/IA-2β KO islets, with a similar first phase and smaller second phase compared with controls. Since the insulin content of IA-2/IA-2β KO islets was ∼45% less than that of controls, fractional insulin secretion (relative to content) was thus increased during first phase and unaffected during second phase. This peculiar response occurred in spite of a slightly smaller rise in [Ca2+]c, could not be attributed to an alteration of glucose metabolism (NADPH fluorescence) and also was observed with tolbutamide. The dual control of insulin secretion via the KATP channel-dependent triggering pathway and KATP channel-independent amplifying pathway was unaltered in IA-2/IA-2β KO islets, and so were the potentiations by acetylcholine or cAMP (forskolin). Intriguingly, amino acids, in particular the cationic arginine and lysine, induced larger fractional insulin secretion in IA-2/IA-2β KO than control islets. In conclusion, IA-2 and IA-2β are dispensable for exocytosis of insulin granules, but are probably more important for cargo loading and/or stability of dense core vesicles.


2015 ◽  
Vol 112 (32) ◽  
pp. 9996-10001 ◽  
Author(s):  
Bingbing Wu ◽  
Shunhui Wei ◽  
Natalia Petersen ◽  
Yusuf Ali ◽  
Xiaorui Wang ◽  
...  

Glucose stimulates insulin secretion from β-cells by increasing intracellular Ca2+. Ca2+ then binds to synaptotagmin-7 as a major Ca2+ sensor for exocytosis, triggering secretory granule fusion and insulin secretion. In type-2 diabetes, insulin secretion is impaired; this impairment is ameliorated by glucagon-like peptide-1 (GLP-1) or by GLP-1 receptor agonists, which improve glucose homeostasis. However, the mechanism by which GLP-1 receptor agonists boost insulin secretion remains unclear. Here, we report that GLP-1 stimulates protein kinase A (PKA)-dependent phosphorylation of synaptotagmin-7 at serine-103, which enhances glucose- and Ca2+-stimulated insulin secretion and accounts for the improvement of glucose homeostasis by GLP-1. A phospho-mimetic synaptotagmin-7 mutant enhances Ca2+-triggered exocytosis, whereas a phospho-inactive synaptotagmin-7 mutant disrupts GLP-1 potentiation of insulin secretion. Our findings thus suggest that synaptotagmin-7 is directly activated by GLP-1 signaling and may serve as a drug target for boosting insulin secretion. Moreover, our data reveal, to our knowledge, the first physiological modulation of Ca2+-triggered exocytosis by direct phosphorylation of a synaptotagmin.


Sign in / Sign up

Export Citation Format

Share Document