scholarly journals Noise-induced properties of active dendrites

2021 ◽  
Vol 118 (34) ◽  
pp. e2023381118
Author(s):  
Carl van Vreeswijk ◽  
Farzada Farkhooi

Dendrites play an essential role in the integration of highly fluctuating input in vivo into neurons across all nervous systems. Yet, they are often studied under conditions where inputs to dendrites are sparse. The dynamic properties of active dendrites facing in vivo–like fluctuating input thus remain elusive. In this paper, we uncover dynamics in a canonical model of a dendritic compartment with active calcium channels, receiving in vivo–like fluctuating input. In a single-compartment model of the active dendrite with fast calcium activation, we show noise-induced nonmonotonic behavior in the relationship of the membrane potential output, and mean input emerges. In contrast, noise can induce bistability in the input–output relation in the system with slowly activating calcium channels. Both phenomena are absent in a noiseless condition. Furthermore, we show that timescales of the emerging stochastic bistable dynamics extend far beyond a deterministic system due to stochastic switching between the solutions. A numerical simulation of a multicompartment model neuron shows that in the presence of in vivo–like synaptic input, the bistability uncovered in our analysis persists. Our results reveal that realistic synaptic input contributes to sustained dendritic nonlinearities, and synaptic noise is a significant component of dendritic input integration.

2020 ◽  
Author(s):  
Carl van Vreeswijk ◽  
Farzada Farkhooi

Dendrites play an essential role in the integration of highly fluctuating input into neurons across all nervous systems. Nevertheless, they are often studied under the conditions where inputs to dendrites are sparse. Up to date, the dynamic properties of active dendrites facing in-vivo-like fluctuating input remains elusive. In this paper, we uncover fundamentally new dynamics in a canonical model of a dendritic compartment with active calcium channels, receiving in-vivo-like fluctuating input. We show in-vivo-like noise induces non-monotonic or bistable dynamics in the input-output relation of a dendritic compartment, both of which are absent in a noiseless condition. Our analysis shows that the timescales of the activation gating variable of the dendritic calcium dynamics determine noise-induced spontaneous order in the system. Noise can induce non-monotonicity or bistability with fast or slow calcium activation respectively. We characterize these noise-induced phenomena and their influence on the input-output relation. Furthermore, we show that timescales of the emerging stochastic bistable dynamics go far beyond a deterministic system due to stochastic switching between the solutions. Our results reveal that noise contributes to sustained dendritic nonlinearities, and it could be considered a principal component of the dendritic input integration strategies.


2003 ◽  
Vol 90 (6) ◽  
pp. 3998-4015 ◽  
Author(s):  
Astrid A. Prinz ◽  
Cyrus P. Billimoria ◽  
Eve Marder

Conventionally, the parameters of neuronal models are hand-tuned using trial-and-error searches to produce a desired behavior. Here, we present an alternative approach. We have generated a database of about 1.7 million single-compartment model neurons by independently varying 8 maximal membrane conductances based on measurements from lobster stomatogastric neurons. We classified the spontaneous electrical activity of each model neuron and its responsiveness to inputs during runtime with an adaptive algorithm and saved a reduced version of each neuron's activity pattern. Our analysis of the distribution of different activity types (silent, spiking, bursting, irregular) in the 8-dimensional conductance space indicates that the coarse grid of conductance values we chose is sufficient to capture the salient features of the distribution. The database can be searched for different combinations of neuron properties such as activity type, spike or burst frequency, resting potential, frequency–current relation, and phase-response curve. We demonstrate how the database can be screened for models that reproduce the behavior of a specific biological neuron and show that the contents of the database can give insight into the way a neuron's membrane conductances determine its activity pattern and response properties. Similar databases can be constructed to explore parameter spaces in multicompartmental models or small networks, or to examine the effects of changes in the voltage dependence of currents. In all cases, database searches can provide insight into how neuronal and network properties depend on the values of the parameters in the models.


1992 ◽  
Vol 132 (2) ◽  
pp. 185-193 ◽  
Author(s):  
J. C. Byatt ◽  
P. J. Eppard ◽  
J. J. Veenhuizen ◽  
R. H. Sorbet ◽  
F. C. Buonomo ◽  
...  

ABSTRACT The clearance rate of recombinant bovine placental lactogen (rbPL) from the blood serum of four lactating dairy cows was measured using a specific radioimmunoassay. Two animals were non-pregnant, while the other two were at approximately 120 days of gestation. The rbPL was administered as an i.v. bolus injection (4 mg total) via an indwelling jugular catheter. Blood samples were taken periodically for 180 min and assayed for rbPL. Analysis of the clearance curves for the bolus injection suggested a single-compartment model and a serum half-life of 7·25 min. In a second experiment with the same animals, following cessation of lactation, rbPL or bovine GH (bGH) were administered by s.c. injection (50 mg/day) for 5 consecutive days. Blood samples were taken twice per day during the treatment period and a 3-day pretreatment period. Samples were analysed for glucose, blood urea nitrogen (BUN), non-esterified fatty acids (NEFA), creatinine, insulin, insulin-like growth factor-I (IGF-I) and IGF-II, tri-iodothyronine (T3), progesterone and IGF-binding protein-2 (IGFBP-2) to determine whether rbPL mediates similar metabolic effects to those of bGH. Administration of bGH stimulated an increase in NEFA, glucose, T3 and insulin, whereas none of these variables was affected by rbPL. The plasma concentrations of IGF-I and IGF-II were both increased by treatment with rbPL but, to a lesser extent than occurred with bGH. Interestingly, BUN and IGFBP-2 concentrations were reduced equally by bGH and rbPL. These results suggest that rbPL does not necessarily act as a GH agonist but, rather, may have distinct effects on intermediary metabolism that could be mediated through another specific receptor. Journal of Endocrinology (1992) 132, 185–193


2001 ◽  
Vol 40 (05) ◽  
pp. 164-171 ◽  
Author(s):  
B. Nowak ◽  
H.-J. Kaiser ◽  
S. Block ◽  
K.-C. Koch ◽  
J. vom Dahl ◽  
...  

Summary Aim: In the present study a new approach has been developed for comparative quantification of absolute myocardial blood flow (MBF), myocardial perfusion, and myocardial metabolism in short-axis slices. Methods: 42 patients with severe CAD, referred for myocardial viability diagnostics, were studied consecutively with 0-15-H2O PET (H2O-PET) (twice), Tc-99m-Tetrofosmin 5PECT (TT-SPECT) and F-18-FDG PET (FDG-PET). All dato sets were reconstructed using attenuation correction and reoriented into short axis slices. Each heart was divided into three representative slices (base, rnidventricular, apex) and 18 ROIs were defined on the FDG PET images and transferred to the corresponding H2O-PET and TT-SPECT slices. TT-SPECT and FDG-PET data were normalized to the ROI showing maximum perfusion. MBF was calculated for all left-ventricular ROIs using a single-compartment-model fitting the dynamic H2O-PET studies. Microsphere equivalent MBF (MBF_micr) was calculated by multiplying MBF and tissue-fraction, a parameter which was obtained by fitting the dynamic H2O-PET studies. To reduce influence of viability only well perfused areas (>70% TT-SPECT) were used for comparative quantification. Results: First and second mean global MBF values were 0.85 ml × min-1 × g-1 and 0.84 ml × min-1 × g1, respectively, with a repeatability coefficient of 0.30 ml ÷ min-1 × gl. After sectorization mean MBF_micr was between 0.58 ml × min1 ÷ ml"1 and 0.68 ml × min-1 × ml"1 in well perfused areas. Corresponding TT-SPECT values ranged from 83 % to 91 %, and FDG-PET values from 91 % to 103%. All procedures yielded higher values for the lateral than the septal regions. Conclusion: Comparative quantification of MBF, MBF_micr, TT-SPECT perfusion and FDG-PET metabolism can be done with the introduced method in short axis slices. The obtained values agree well with experimentally validated values of MBF and MBF_micr.


Genetics ◽  
2021 ◽  
Author(s):  
Christopher A Piggott ◽  
Zilu Wu ◽  
Stephen Nurrish ◽  
Suhong Xu ◽  
Joshua M Kaplan ◽  
...  

Abstract The junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole C. elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 co-localizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68/RyR calcium channel, and is required for animal movement. In neurons, JPH-1 co-localizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) in soma, and is present near presynaptic release sites. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-2 have antagonistic roles in neuromuscular synaptic transmission. Additionally, we find an unexpected cell non-autonomous effect of jph-1 in axon regrowth after injury. Genetic double mutant analysis suggests that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and unc-68/RyR for animal health and development. Finally, we show that jph-1 regulates the colocalization of EGL-19 and UNC-68 and that unc-68/RyR is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.


Sign in / Sign up

Export Citation Format

Share Document