scholarly journals Acute Trem2 reduction triggers increased microglial phagocytosis, slowing amyloid deposition in mice

2021 ◽  
Vol 118 (27) ◽  
pp. e2100356118
Author(s):  
Kathleen M. Schoch ◽  
Lubov A. Ezerskiy ◽  
Michaela M. Morhaus ◽  
Riley N. Bannon ◽  
Andrew D. Sauerbeck ◽  
...  

Heterozygous genetic variants within the TREM2 gene show a strong association with increased Alzheimer’s disease (AD) risk. Amyloid beta–depositing mouse models haploinsufficient or null for Trem2 have identified important relationships among TREM2, microglia, and AD pathology; however, results are challenging to interpret in the context of varying microglial phenotypes and disease progression. We hypothesized that acute Trem2 reduction may alter amyloid pathology and microglial responses independent of genetic Trem2 deletion in mouse models. We developed antisense oligonucleotides (ASOs) that potently but transiently lower Trem2 messenger RNA throughout the brain and administered them to APP/PS1 mice at varying stages of plaque pathology. Late-stage ASO-mediated Trem2 knockdown significantly reduced plaque deposition and attenuated microglial association around plaque deposits when evaluated 1 mo after ASO injection. Changes in microglial gene signatures 1 wk after ASO administration and phagocytosis measured in ASO-treated cells together indicate that microglia may be activated with short-term Trem2 reduction. These results suggest a time- and/or dose-dependent role for TREM2 in mediating plaque deposition and microglial responses in which loss of TREM2 function may be beneficial for microglial activation and plaque removal in an acute context.

Author(s):  
Silvio R. Meier ◽  
Dag Sehlin ◽  
Greta Hultqvist ◽  
Stina Syvänen

Abstract Purpose The triggering receptor expressed on myeloid cells 2 (TREM2) is expressed by brain microglia. Microglial activation, as observed in Alzheimer’s disease (AD) as well as in transgenic mice expressing human amyloid-beta, appears to increase soluble TREM2 (sTREM2) levels in CSF and brain. In this study, we used two different transgenic mouse models of AD pathology and investigated the potential of TREM2 to serve as an in vivo biomarker for microglial activation in AD. Procedures We designed and generated a bispecific antibody based on the TREM2-specific monoclonal antibody mAb1729, fused to a single-chain variable fragment of the transferrin receptor binding antibody 8D3. The 8D3-moiety enabled transcytosis of the whole bispecific antibody across the blood-brain barrier. The bispecific antibody was radiolabeled with I-125 (ex vivo) or I-124 (PET) and administered to transgenic AD and wild-type (WT) control mice. Radioligand retention in the brain of transgenic animals was compared to WT mice by isolation of brain tissue at 24 h or 72 h, or with in vivo PET at 24 h, 48 h, and 72 h. Intrabrain distribution of radiolabeled mAb1729-scFv8D3CL was further studied by autoradiography, while ELISA was used to determine TREM2 brain concentrations. Results Transgenic animals displayed higher total exposure, calculated as the AUC based on SUV determined at 24h, 48h, and 72h post injection, of PET radioligand [124I]mAb1729-scFv8D3CL than WT mice. However, differences were not evident in single time point PET images or SUVs. Ex vivo autoradiography confirmed higher radioligand concentrations in cortex and thalamus in transgenic mice compared to WT, and TREM2 levels in brain homogenates were considerably higher in transgenic mice compared to WT. Conclusion Antibody-based radioligands, engineered to enter the brain, may serve as PET radioligands to follow changes of TREM2 in vivo, but antibody formats with faster systemic clearance to increase the specific signal in relation to that from blood in combination with antibodies showing higher affinity for TREM2 must be developed to further progress this technique for in vivo use.


2012 ◽  
Vol 27 (9) ◽  
pp. 1164-1173 ◽  
Author(s):  
Elisabetta Soragni ◽  
Chunping Xu ◽  
Heather L. Plasterer ◽  
Vincent Jacques ◽  
James R. Rusche ◽  
...  

Numerous studies have pointed to histone deacetylase inhibitors as potential therapeutics for various neurodegenerative diseases, and clinical trials with several histone deacetylase inhibitors have been performed or are under way. However, histone deacetylase inhibitors tested to date either are highly cytotoxic or have very low specificities for different histone deacetylase enzymes. The authors’ laboratories have identified a novel class of histone deacetylase inhibitors (2-aminobenzamides) that reverses heterochromatin-mediated silencing of the frataxin ( FXN) gene in Friedreich ataxia. The authors have identified the histone deacetylase enzyme isotype target of these compounds and present evidence that compounds that target this enzyme selectively increase FXN expression from pathogenic alleles. Studies with model compounds show that these histone deacetylase inhibitors increase FXN messenger RNA levels in the brain in mouse models for Friedreich ataxia and relieve neurological symptoms observed in mouse models and support the notion that this class of molecules may serve as therapeutics for the human disease.


2022 ◽  
Author(s):  
Daniel Felsky ◽  
Hans-Ulrich Klein ◽  
Vilas Menon ◽  
Yiyi Ma ◽  
Yanling Wang ◽  
...  

Abstract Despite a growing focus on neuroimmune mechanisms of Alzheimer’s disease (AD), the role of peripheral monocytes remains largely unknown. Circulating monocytes communicate with the brain’s resident myeloid cells, microglia, via chemical signaling and can directly infiltrate the brain parenchyma.1 Thus, molecular signatures of monocytes may serve as indicators of neuropathological events unfolding in the CNS.2–5 However, no studies have yet directly tested the association of monocyte gene expression on longitudinal cognitive decline or postmortem neuropathology and brain gene expression in aging. Here we present a resource of RNA sequencing of purified CD14+ human monocytes - including an eQTL map - from over 200 elderly individuals, most with accompanying bulk brain RNA sequencing profiles, longitudinal cognitive assessments, and detailed postmortem neuropathological examinations. We tested the direct correlation of gene expression between monocytes and bulk brain tissue, finding very few significant signals driven largely by genetic variation. However, we did identify sets of monocyte-expressed genes that were highly predictive of postmortem microglial activation, diffuse amyloid plaque deposition, and cerebrovascular disease. Our findings prioritize potential blood-based molecular biomarkers for AD; they also reveal the previously unknown architecture of shared gene expression between the CNS and peripheral immune system in aging.


Author(s):  
D.N. Collins ◽  
J.N. Turner ◽  
K.O. Brosch ◽  
R.F. Seegal

Polychlorinated biphenyls (PCBs) are a ubiquitous class of environmental pollutants with toxic and hepatocellular effects, including accumulation of fat, proliferated smooth endoplasmic recticulum (SER), and concentric membrane arrays (CMAs) (1-3). The CMAs appear to be a membrane storage and degeneration organelle composed of a large number of concentric membrane layers usually surrounding one or more lipid droplets often with internalized membrane fragments (3). The present study documents liver alteration after a short term single dose exposure to PCBs with high chlorine content, and correlates them with reported animal weights and central nervous system (CNS) measures. In the brain PCB congeners were concentrated in particular regions (4) while catecholamine concentrations were decreased (4-6). Urinary levels of homovanillic acid a dopamine metabolite were evaluated (7).Wistar rats were gavaged with corn oil (6 controls), or with a 1:1 mixture of Aroclor 1254 and 1260 in corn oil at 500 or 1000 mg total PCB/kg (6 at each level).


Author(s):  
Jochen Seitz ◽  
Katharina Bühren ◽  
Georg G. von Polier ◽  
Nicole Heussen ◽  
Beate Herpertz-Dahlmann ◽  
...  

Objective: Acute anorexia nervosa (AN) leads to reduced gray (GM) and white matter (WM) volume in the brain, which however improves again upon restoration of weight. Yet little is known about the extent and clinical correlates of these brain changes, nor do we know much about the time-course and completeness of their recovery. Methods: We conducted a meta-analysis and a qualitative review of all magnetic resonance imaging studies involving volume analyses of the brain in both acute and recovered AN. Results: We identified structural neuroimaging studies with a total of 214 acute AN patients and 177 weight-recovered AN patients. In acute AN, GM was reduced by 5.6% and WM by 3.8% compared to healthy controls (HC). Short-term weight recovery 2–5 months after admission resulted in restitution of about half of the GM aberrations and almost full WM recovery. After 2–8 years of remission GM and WM were nearly normalized, and differences to HC (GM: –1.0%, WM: –0.7%) were no longer significant, although small residual changes could not be ruled out. In the qualitative review some studies found GM volume loss to be associated with cognitive deficits and clinical prognosis. Conclusions: GM and WM were strongly reduced in acute AN. The completeness of brain volume rehabilitation remained equivocal.


2001 ◽  
Vol 91 (6) ◽  
pp. 2703-2712 ◽  
Author(s):  
Stephen M. Johnson ◽  
Julia E. R. Wilkerson ◽  
Daniel R. Henderson ◽  
Michael R. Wenninger ◽  
Gordon S. Mitchell

Brain stem preparations from adult turtles were used to determine how bath-applied serotonin (5-HT) alters respiration-related hypoglossal activity in a mature vertebrate. 5-HT (5–20 μM) reversibly decreased integrated burst amplitude by ∼45% ( P < 0.05); burst frequency decreased in a dose-dependent manner with 20 μM abolishing bursts in 9 of 13 preparations ( P < 0.05). These 5-HT-dependent effects were mimicked by application of a 5-HT1A agonist, but not a 5-HT1B agonist, and were abolished by the broad-spectrum 5-HT antagonist, methiothepin. During 5-HT (20 μM) washout, frequency rebounded to levels above the original baseline for 40 min ( P < 0.05) and remained above baseline for 2 h. A 5-HT3 antagonist (tropesitron) blocked the post-5-HT rebound and persistent frequency increase. A 5-HT3 agonist (phenylbiguanide) increased frequency during and after bath application ( P < 0.05). When phenylbiguanide was applied to the brain stem of brain stem/spinal cord preparations, there was a persistent frequency increase ( P < 0.05), but neither spinal-expiratory nor -inspiratory burst amplitude were altered. The 5-HT3receptor-dependent persistent frequency increase represents a unique model of plasticity in vertebrate rhythm generation.


2021 ◽  
Vol 22 (9) ◽  
pp. 4511
Author(s):  
Chiara A. De Benedictis ◽  
Claudia Haffke ◽  
Simone Hagmeyer ◽  
Ann Katrin Sauer ◽  
Andreas M. Grabrucker

In the last years, research has shown that zinc ions play an essential role in the physiology of brain function. Zinc acts as a potent neuromodulatory agent and signaling ions, regulating healthy brain development and the function of both neurons and glial cells. Therefore, the concentration of zinc within the brain and its cells is tightly controlled. Zinc transporters are key regulators of (extra-) cellular zinc levels, and deregulation of zinc homeostasis and zinc transporters has been associated with neurodegenerative and neuropsychiatric disorders. However, to date, the presence of specific family members and their subcellular localization within brain cells have not been investigated in detail. Here, we analyzed the expression of all zinc transporters (ZnTs) and Irt-like proteins (ZIPs) in the rat brain. We further used primary rat neurons and rat astrocyte cell lines to differentiate between the expression found in neurons or astrocytes or both. We identified ZIP4 expressed in astrocytes but significantly more so in neurons, a finding that has not been reported previously. In neurons, ZIP4 is localized to synapses and found in a complex with major postsynaptic scaffold proteins of excitatory synapses. Synaptic ZIP4 reacts to short-term fluctuations in local zinc levels. We conclude that ZIP4 may have a so-far undescribed functional role at excitatory postsynapses.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anton Lindberg ◽  
Ryosuke Arakawa ◽  
Tsuyoshi Nogami ◽  
Sangram Nag ◽  
Magnus Schou ◽  
...  

Abstract Background Over the last decade, a few radioligands have been developed for PET imaging of brain 5-HT1B receptors. The 5-HT1B receptor is a G-protein-coupled receptor (GPCR) that exists in two different agonist affinity states. An agonist ligand is expected to be more sensitive towards competition from another agonist, such as endogenous 5-HT, than an antagonist ligand. It is of interest to know whether the intrinsic activity of a PET radioligand for the 5-HT1B receptor impacts on its ability to detect changes in endogenous synaptic 5-HT density. Three high-affinity 11C-labeled 5-HT1B PET radioligands with differing intrinsic activity were applied to PET measurements in cynomolgus monkey to evaluate their sensitivity to be displaced within the brain by endogenous 5-HT. For these experiments, fenfluramine was pre-administered at two different doses (1.0 and 5.0 mg/kg, i.v.) to induce synaptic 5-HT release. Results A dose-dependent response to fenfluramine was detected for all three radioligands. At the highest dose of fenfluramine (5.0 mg/kg, i.v.), reductions in specific binding in the occipital cortex increased with radioligand agonist efficacy, reaching 61% for [11C]3. The most antagonistic radioligand showed the lowest reduction in specific binding. Conclusions Three 5-HT1B PET radioligands were identified with differing intrinsic activity that could be used in imaging high- and low-affinity states of 5-HT1B receptors using PET. From this limited study, radioligand sensitivity to endogenous 5-HT appears to depend on agonist efficacy. More extensive studies are required to substantiate this suggestion.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Rinie Bajracharya ◽  
David Brici ◽  
Liviu-Gabriel Bodea ◽  
Phillip W. Janowicz ◽  
Jürgen Götz ◽  
...  

AbstractOne of the main pathological hallmarks of Alzheimer’s disease (AD) is the intraneuronal accumulation of hyperphosphorylated tau. Passive immunotherapy is a promising strategy for the treatment of AD and there are currently a number of tau-specific monoclonal antibodies in clinical trials. A proposed mechanism of action is to engage and clear extracellular, pathogenic forms of tau. This process has been shown in vitro to be facilitated by microglial phagocytosis through interactions between the antibody-tau complex and microglial Fc-receptors. As this interaction is mediated by the conformation of the antibody's Fc domain, this suggests that the antibody isotype may affect the microglial phagocytosis and clearance of tau, and hence, the overall efficacy of tau antibodies. We therefore aimed to directly compare the efficacy of the tau-specific antibody, RN2N, cloned into a murine IgG1/κ framework, which has low affinity Fc-receptor binding, to that cloned into a murine IgG2a/κ framework, which has high affinity Fc-receptor binding. Our results demonstrate, for RN2N, that although enhanced microglial activation via the IgG2a/κ isotype increased extracellular tau phagocytosis in vitro, the IgG1/κ isoform demonstrated enhanced ability to reduce tau pathology and microgliosis following passive immunisation of the P301L tau transgenic pR5 mouse model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Liu ◽  
Lizhen Wang ◽  
Donghui Pan ◽  
Mingzhu Li ◽  
Yaoqi Li ◽  
...  

AbstractLight therapy has been accepted as a promising therapeutic choice for depression. Positron emission tomography (PET) combined with specific radiotracers has great benefits for revealing pathogenesis and developing therapeutics. This study aimed to investigate the influences of light therapy on microglial activation and glucagon-like peptide-1 receptor (GLP-1R) expression in the brain of depressive rats using [18F]DPA-714 and [18F]exendin-4 PET. The results showed that chronic unpredictable mild stress (CUMS)-induced depressive rats had poorer performance in behavioral tests compared to normal rats (p < 0.05) and the depressive-like behavior could be ameliorated by light therapy. Besides, depressive rats had significantly higher [18F]DPA-714 uptake and lower [18F]FDG uptake compare to normal rats in 11 and 9 regions of interest (ROIs) of the brain, respectively (p < 0.05). After 5 weeks of light therapy, higher [18F]FDG and [18F]exendin-4 uptake was observed in most ROIs of light therapy-treated depressive rats compared to untreated depressive rats (p < 0.05) and no significant differences existed in [18F]DPA-714 uptake between the two groups. This study demonstrated that light therapy can ameliorate depressive-like behavior, improve glucose metabolism, and halt the decline of brain GLP-1R expression of depressive rats, but have no effects on microglial activation caused by CUMS. Besides, this study validated that [18F]DPA-714 and [18F]exendin-4 PET have the potential for noninvasive evaluation of microglial activation and GLP-1R expression in the brain of depression.


Sign in / Sign up

Export Citation Format

Share Document