scholarly journals Synergistic dispersal of plant pathogen spores by jumping-droplet condensation and wind

2021 ◽  
Vol 118 (34) ◽  
pp. e2106938118
Author(s):  
Ranit Mukherjee ◽  
Hope A. Gruszewski ◽  
Landon T. Bilyeu ◽  
David G. Schmale ◽  
Jonathan B. Boreyko

Plant pathogens are responsible for the annual yield loss of crops worldwide and pose a significant threat to global food security. A necessary prelude to many plant disease epidemics is the short-range dispersal of spores, which may generate several disease foci within a field. New information is needed on the mechanisms of plant pathogen spread within and among susceptible plants. Here, we show that self-propelled jumping dew droplets, working synergistically with low wind flow, can propel spores of a fungal plant pathogen (wheat leaf rust) beyond the quiescent boundary layer and disperse them onto neighboring leaves downwind. An array of horizontal water-sensitive papers was used to mimic healthy wheat leaves and showed that up to 25 spores/h may be deposited on a single leaf downwind of the infected leaf during a single dew cycle. These findings reveal that a single dew cycle can disperse copious numbers of fungal spores to other wheat plants, even in the absence of rain splash or strong gusts of wind.

2016 ◽  
Vol 106 (10) ◽  
pp. 1206-1212 ◽  
Author(s):  
Hesham A. Y. Gibriel ◽  
Bart P. H. J. Thomma ◽  
Michael F. Seidl

Microbial pathogens cause devastating diseases on economically and ecologically important plant species, threatening global food security, and causing billions of dollars of losses annually. During the infection process, pathogens secrete so-called effectors that support host colonization, often by deregulating host immune responses. Over the last decades, much of the research on molecular plant-microbe interactions has focused on the identification and functional characterization of such effectors. The increasing availability of sequenced plant pathogen genomes has enabled genomics-based discovery of effector candidates. Nevertheless, identification of full plant pathogen effector repertoires is often hampered by erroneous gene annotation and the localization effector genes in genomic regions that are notoriously difficult to assemble. Here, we argue that recent advances in genome sequencing technologies, genome assembly, gene annotation, as well as effector identification methods hold promise to disclose complete and correct effector repertoires. This allows to exploit complete effector repertoires, and knowledge of their diversity within pathogen populations, to develop durable and sustainable resistance breeding strategies, disease control, and management of plant pathogens.


2014 ◽  
Vol 40 (2) ◽  
pp. 178-181 ◽  
Author(s):  
Erlei Melo Reis ◽  
Tiago Zanatta ◽  
Anderson L. Danelli

Techniques that result in increased pathogen infection rates by employing reduced quantities of fungal spores with sparse sporulation have been developed. Experiments under controlled environment conditions were conducted to evaluate the effect of the density of Bipolaris sorokiniana conidia on the intensity of wheat helminthosporiosis. Using a selected inoculum density, the concentration of the tensoactive (Tween 20) that promoted maximum infection by the causal agent of the disease was determined. The density of lesions and the estimated severity of the disease were quantified. The selected inoculum density was 1.5 x 10(4) spores.mL-1 plus 480 µL tensoactive.L-1 water, resulting in a disease severity that allows selecting wheat cultivars resistant to B. sorokiniana.


2019 ◽  
Author(s):  
Tatsuya Nobori ◽  
Yiming Wang ◽  
Jingni Wu ◽  
Sara Christina Stolze ◽  
Yayoi Tsuda ◽  
...  

AbstractUnderstanding how gene expression is regulated in plant pathogens is crucial for pest control and thus global food security. An integrated understanding of bacterial gene regulation in the host is dependent on multi-omic datasets, but these are largely lacking. Here, we simultaneously characterized the transcriptome and proteome of a foliar bacterial pathogen, Pseudomonas syringae, in Arabidopsis thaliana and identified a number of bacterial processes influenced by plant immunity at the mRNA and the protein level. We found instances of both concordant and discordant regulation of bacterial mRNAs and proteins. Notably, the tip component of bacterial type III secretion system was selectively suppressed by the plant salicylic acid pathway at the protein level, suggesting protein-level targeting of the bacterial virulence system by plant immunity. Furthermore, gene co-expression analysis illuminated previously unknown gene regulatory modules underlying bacterial virulence and their regulatory hierarchy. Collectively, the integrated in planta bacterial omics approach provides molecular insights into multiple layers of bacterial gene regulation that contribute to bacterial growth in planta and elucidate the role of plant immunity in controlling pathogens.


2013 ◽  
Vol 13 (1) ◽  
pp. 1767-1793 ◽  
Author(s):  
J. A. Huffman ◽  
C. Pöhlker ◽  
A. J. Prenni ◽  
P. J. DeMott ◽  
R. H. Mason ◽  
...  

Abstract. Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties and sources are not well understood. Here we show that the concentration of airborne biological particles in a forest ecosystem increases dramatically during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2–6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteraceae, Pseudomonadaceae). In addition to known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN and rainfall are more tightly coupled than previously assumed.


Author(s):  
G. Hall

Abstract A description is provided for Peronospora sordida. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Scrophularia altaica, S. aquatica, S. auriculata, S. bosniaca, S. californica, S. heterophylla, S. lanceolata, S. marylandica, S. nodosa, S. scopolii, S. umbrosa (=S. alata), Verbascum banaticum, V. blattaria, V. densiflorum (=V. thapsiforme), V. glabratum subsp. glabratum, V. lychnitis, V. nigrum, V. phlomoides, V. phoenicum, V. speciosum, V. thapsus, V. thapsus subsp. crassifolium (=V. montanum), V. virgatum. DISEASE: Downy mildew of Scrophularia and Verbascum, some species of which may be cultivated commercially for their medicinal or ornamental value; an obligately necrotrophic plant pathogen. GEOGRAPHICAL DISTRIBUTION: Asia; USSR (Kirghizia, Turkmenia, Uzbekistan). Europe; Austria, Belgium, France, Czechoslovakia, Denmark, Eire, Finland, Germany, Hungary, Italy, Netherlands, Norway, Poland, Rumania, USSR (Byelorussia, Estonia, Latvia, Lithuania, RSFSR, Ukraine), Sweden, Switzerland, UK (England, Channel Islands, Northern Ireland, Scotland, Wales), Yugoslavia. North America; USA (California, Illinois, Indiana, Iowa, Kansas, Kentucky, Missouri, Nebraska, New York, Ohio, Wisconsin, Virginia). TRANSMISSION: By spores ('conidia') dispersed by wind or rain-splash. The role of oospores (if they are usually formed) in disease transmission is unknown.


2021 ◽  
pp. 643-680
Author(s):  
Vincent M. Were ◽  
◽  
Nicholas J. Talbot ◽  

There are important biological process involved in rice blast disease that are now well-studied during the early events in plant infection which include: the cell biology of appressorium formation, the biology of invasive growth and effector secretion, the two distinct mechanisms of effector secretion, the nature of the plant-pathogen interface, PAMP-triggered immunity modulation by secreted effectors and effector-triggered immunity and blast resistance. The devastating losses caused by the blast fungus have been documented in most grasses, but this chapter discusses the use of major resistance genes to rice blast and wheat blast disease as an emerging threat to global food security. This chapter also highlights an emerging approach to breed for durable resistance to plant pathogens using gene editing technologies with an example: CRISPR-Cas9 mutagenesis of dominant S-genes for disease control.


Apidologie ◽  
2019 ◽  
Vol 50 (6) ◽  
pp. 871-880 ◽  
Author(s):  
Jorgiane B. Parish ◽  
Eileen S. Scott ◽  
Raymond Correll ◽  
Katja Hogendoorn

AbstractHoney bees, Apis mellifera, have been implicated as vectors of plant pathogens. However, the survival of spores of plant pathogenic fungi through the digestive tract of workers has not been investigated. As workers defecate outside the hive, transport of hives could give rise to biosecurity concerns if fungal spores remain viable following passage through the digestive tract. To determine the likelihood that honey bees serve as vectors, this study investigated the viability of spores of Botrytis cinerea and Colletotrichum acutatum after passing through the digestive tract of summer and autumn worker bees. For both fungi, the mean viability of spores in faeces suspensions was less than one percent of the initial dose fed to the bees. Although survival was low, the large number of workers per hive implies a high probability of transmission of viable spores through honey bee faeces. Hence, in the case of economically important fungal diseases, transported hives could be a source of inoculum and quarantine restrictions should be considered.


2007 ◽  
Vol 73 (16) ◽  
pp. 5162-5172 ◽  
Author(s):  
Wei-Jen Chen ◽  
François Delmotte ◽  
Sylvie Richard Cervera ◽  
Lisette Douence ◽  
Charles Greif ◽  
...  

ABSTRACT Quinone outside inhibiting (QoI) fungicides represent one of the most widely used groups of fungicides used to control agriculturally important fungal pathogens. They inhibit the cytochrome bc 1 complex of mitochondrial respiration. Soon after their introduction onto the market in 1996, QoI fungicide-resistant isolates were detected in field plant pathogen populations of a large range of species. However, there is still little understanding of the processes driving the development of QoI fungicide resistance in plant pathogens. In particular, it is unknown whether fungicide resistance occurs independently in isolated populations or if it appears once and then spreads globally by migration. Here, we provide the first case study of the evolutionary processes that lead to the emergence of QoI fungicide resistance in the plant pathogen Plasmopara viticola. Sequence analysis of the complete cytochrome b gene showed that all resistant isolates carried a mutation resulting in the replacement of glycine by alanine at codon 143 (G143A). Phylogenetic analysis of a large mitochondrial DNA fragment including the cytochrome b gene (2,281 bp) across a wide range of European P. viticola isolates allowed the detection of four major haplotypes belonging to two distinct clades, each of which contains a different QoI fungicide resistance allele. This is the first demonstration that a selected substitution conferring resistance to a fungicide has occurred several times in a plant-pathogen system. Finally, a high population structure was found when the frequency of QoI fungicide resistance haplotypes was assessed in 17 French vineyards, indicating that pathogen populations might be under strong directional selection for local adaptation to fungicide pressure.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yaqiong Zhao ◽  
Yilin Gu ◽  
Feng Qin ◽  
Xiaolong Li ◽  
Zhanhong Ma ◽  
...  

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a devastating wheat disease worldwide. Potential application of near-infrared spectroscopy (NIRS) in detection of pathogen amounts in latently Pst-infected wheat leaves was investigated for disease prediction and control. A total of 300 near-infrared spectra were acquired from the Pst-infected leaf samples in an incubation period, and relative contents of Pst DNA in the samples were obtained using duplex TaqMan real-time PCR arrays. Determination models of the relative contents of Pst DNA in the samples were built using quantitative partial least squares (QPLS), support vector regression (SVR), and a method integrated with QPLS and SVR. The results showed that the kQPLS-SVR model built with a ratio of training set to testing set equal to 3 : 1 based on the original spectra, when the number of the randomly selected wavelength points was 700, the number of principal components was 8, and the number of the built QPLS models was 5, was the best. The results indicated that quantitative detection of Pst DNA in leaves in the incubation period could be implemented using NIRS. A novel method for determination of latent infection levels of Pst and early detection of stripe rust was provided.


Sign in / Sign up

Export Citation Format

Share Document