scholarly journals Essential role of systemic iron mobilization and redistribution for adaptive thermogenesis through HIF2-α/hepcidin axis

2021 ◽  
Vol 118 (40) ◽  
pp. e2109186118
Author(s):  
Jin-Seon Yook ◽  
Mikyoung You ◽  
Jiyoung Kim ◽  
Ashley M. Toney ◽  
Rong Fan ◽  
...  

Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a β3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein–mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.

2019 ◽  
Vol 116 (47) ◽  
pp. 23822-23828 ◽  
Author(s):  
Shintaro Yamaguchi ◽  
Michael P. Franczyk ◽  
Maria Chondronikola ◽  
Nathan Qi ◽  
Subhadra C. Gunawardana ◽  
...  

Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme for cellular energy metabolism. The aim of the present study was to determine the importance of brown and white adipose tissue (BAT and WAT) NAD+ metabolism in regulating whole-body thermogenesis and energy metabolism. Accordingly, we generated and analyzed adipocyte-specific nicotinamide phosphoribosyltransferase (Nampt) knockout (ANKO) and brown adipocyte-specific Nampt knockout (BANKO) mice because NAMPT is the rate-limiting NAD+ biosynthetic enzyme. We found ANKO mice, which lack NAMPT in both BAT and WAT, had impaired gene programs involved in thermogenesis and mitochondrial function in BAT and a blunted thermogenic (rectal temperature, BAT temperature, and whole-body oxygen consumption) response to acute cold exposure, prolonged fasting, and administration of β-adrenergic agonists (norepinephrine and CL-316243). In addition, the absence of NAMPT in WAT markedly reduced adrenergic-mediated lipolytic activity, likely through inactivation of the NAD+–SIRT1–caveolin-1 axis, which limits an important fuel source fatty acid for BAT thermogenesis. These metabolic abnormalities were rescued by treatment with nicotinamide mononucleotide (NMN), which bypasses the block in NAD+ synthesis induced by NAMPT deficiency. Although BANKO mice, which lack NAMPT in BAT only, had BAT cellular alterations similar to the ANKO mice, BANKO mice had normal thermogenic and lipolytic responses. We also found NAMPT expression in supraclavicular adipose tissue (where human BAT is localized) obtained from human subjects increased during cold exposure, suggesting our finding in rodents could apply to people. These results demonstrate that adipose NAMPT-mediated NAD+ biosynthesis is essential for regulating adaptive thermogenesis, lipolysis, and whole-body energy metabolism.


2007 ◽  
Vol 32 (5) ◽  
pp. 852-856 ◽  
Author(s):  
Sean L. McGee

Exercise increases the metabolic capacity of skeletal muscle, which improves whole-body energy homeostasis and contributes to the positive health benefits of exercise. This is, in part, mediated by increases in the expression of a number of metabolic enzymes, regulated largely at the level of transcription. At a molecular level, many of these genes are regulated by the class II histone deacetylase (HDAC) family of transcriptional repressors, in particular HDAC5, through their interaction with myocyte enhancer factor 2 transcription factors. HDAC5 kinases, including 5′-AMP-activated protein kinase and protein kinase D, appear to regulate skeletal muscle metabolic gene transcription by inactivating HDAC5 and inducing HDAC5 nuclear export. These mechanisms appear to participate in exercise-induced gene expression and could be important for skeletal muscle adaptations to exercise.


2017 ◽  
Vol 45 (7) ◽  
pp. 887-893 ◽  
Author(s):  
Katherine J. Motyl ◽  
Anyonya R. Guntur ◽  
Adriana Lelis Carvalho ◽  
Clifford J. Rosen

Biological processes utilize energy and therefore must be prioritized based on fuel availability. Bone is no exception to this, and the benefit of remodeling when necessary outweighs the energy costs. Bone remodeling is important for maintaining blood calcium homeostasis, repairing micro cracks and fractures, and modifying bone structure so that it is better suited to withstand loading demands. Osteoclasts, osteoblasts, and osteocytes are the primary cells responsible for bone remodeling, although bone marrow adipocytes and other cells may also play an indirect role. There is a renewed interest in bone cell energetics because of the potential for these processes to be targeted for osteoporosis therapies. In contrast, due to the intimate link between bone and energy homeostasis, pharmaceuticals that treat metabolic disease or have metabolic side effects often have deleterious bone consequences. In this brief review, we will introduce osteoporosis, discuss how bone cells utilize energy to function, evidence for bone regulating whole body energy homeostasis, and some of the unanswered questions and opportunities for further research in the field.


2020 ◽  
Vol 375 (1793) ◽  
pp. 20190135 ◽  
Author(s):  
Naresh C. Bal ◽  
Muthu Periasamy

Thermogenesis in endotherms relies on both shivering and non-shivering thermogenesis (NST). The role of brown adipose tissue (BAT) in NST is well recognized, but the role of muscle-based NST has been contested. However, recent studies have provided substantial evidence for the importance of muscle-based NST in mammals. This review focuses primarily on the role of sarcoplasmic reticulum (SR) Ca 2+ -cycling in muscle NST; specifically, it will discuss recent data showing how uncoupling of sarcoendoplasmic reticulum calcium ATPase (SERCA) (inhibition of Ca 2+ transport but not ATP hydrolysis) by sarcolipin (SLN) results in futile SERCA pump activity, increased ATP hydrolysis and heat production contributing to muscle NST. It will also critically examine how activation of muscle NST can be an important factor in regulating metabolic rate and whole-body energy homeostasis. In this regard, SLN has emerged as a powerful signalling molecule to promote mitochondrial biogenesis and oxidative metabolism in muscle. Furthermore, we will discuss the functional interplay between BAT and muscle, especially with respect to how reduced BAT function in mammals could be compensated by muscle-based NST. Based on the existing data, we argue that SLN-mediated thermogenesis is an integral part of muscle NST and that muscle NST potentially contributed to the evolution of endothermy within the vertebrate clade. This article is part of the theme issue ‘Vertebrate palaeophysiology’.


2014 ◽  
Vol 307 (4) ◽  
pp. G397-G409 ◽  
Author(s):  
Sukru Gulec ◽  
Gregory J. Anderson ◽  
James F. Collins

Iron is an essential trace mineral that plays a number of important physiological roles in humans, including oxygen transport, energy metabolism, and neurotransmitter synthesis. Iron absorption by the proximal small bowel is a critical checkpoint in the maintenance of whole-body iron levels since, unlike most other essential nutrients, no regulated excretory systems exist for iron in humans. Maintaining proper iron levels is critical to avoid the adverse physiological consequences of either low or high tissue iron concentrations, as commonly occurs in iron-deficiency anemia and hereditary hemochromatosis, respectively. Exquisite regulatory mechanisms have thus evolved to modulate how much iron is acquired from the diet. Systemic sensing of iron levels is accomplished by a network of molecules that regulate transcription of the HAMP gene in hepatocytes, thus modulating levels of the serum-borne, iron-regulatory hormone hepcidin. Hepcidin decreases intestinal iron absorption by binding to the iron exporter ferroportin 1 on the basolateral surface of duodenal enterocytes, causing its internalization and degradation. Mucosal regulation of iron transport also occurs during low-iron states, via transcriptional (by hypoxia-inducible factor 2α) and posttranscriptional (by the iron-sensing iron-regulatory protein/iron-responsive element system) mechanisms. Recent studies demonstrated that these regulatory loops function in tandem to control expression or activity of key modulators of iron homeostasis. In health, body iron levels are maintained at appropriate levels; however, in several inherited disorders and in other pathophysiological states, iron sensing is perturbed and intestinal iron absorption is dysregulated. The iron-related phenotypes of these diseases exemplify the necessity of precisely regulating iron absorption to meet body demands.


Author(s):  
Ian Huck ◽  
E. Matthew Morris ◽  
John Thyfault ◽  
Udayan Apte

Hepatocyte Nuclear Factor 4 alpha (HNF4α) is required for hepatocyte differentiation and regulates expression of genes involved in lipid and carbohydrate metabolism including those that control VLDL secretion and gluconeogenesis. Whereas previous studies have focused on specific genes regulated by HNF4α in metabolism, its overall role in whole body energy utilization has not been studied. In this study, we used indirect calorimetry to determine the effect of hepatocyte-specific HNF4α deletion (HNF4α-KO) in mice on whole body energy expenditure (EE) and substrate utilization in fed, fasted, and high fat diet (HFD) conditions. HNF4α-KO had reduced resting EE during fed conditions and higher rates of carbohydrate oxidation with fasting. HNF4α-KO mice exhibited decreased body mass caused by fat mass depletion despite no change in energy intake and evidence of positive energy balance. HNF4α-KO mice were able to upregulate lipid oxidation during HFD suggesting that their metabolic flexibility was intact. However, only hepatocyte specific HNF4α-KO mice exhibited significant reduction in basal metabolic rate and spontaneous activity during HFD. Consistent with previous studies, hepatic gene expression in HNF4α-KO supports decreased gluconeogenesis and decreased VLDL export and hepatic Beta-oxidation in HNF4α-KO livers across all feeding conditions. Together, our data suggest deletion of hepatic HNF4α increases dependence on dietary carbohydrates and endogenous lipids for energy during fed and fasted conditions by inhibiting hepatic gluconeogenesis, hepatic lipid export, and intestinal lipid absorption resulting in decreased whole body energy expenditure. These data clarify the role of hepatic HNF4α on systemic metabolism and energy homeostasis.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2006-P ◽  
Author(s):  
TING LI ◽  
WILLIAM LESUER ◽  
ABHILASHA SINGH ◽  
JAMES D. HERNANDEZ ◽  
XIAODONG ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document