scholarly journals Large-scale genomic study reveals robust activation of the immune system following advanced Inner Engineering meditation retreat

2021 ◽  
Vol 118 (51) ◽  
pp. e2110455118
Author(s):  
Vijayendran Chandran ◽  
Mei-Ling Bermúdez ◽  
Mert Koka ◽  
Brindha Chandran ◽  
Dhanashri Pawale ◽  
...  

The positive impact of meditation on human well-being is well documented, yet its molecular mechanisms are incompletely understood. We applied a comprehensive systems biology approach starting with whole-blood gene expression profiling combined with multilevel bioinformatic analyses to characterize the coexpression, transcriptional, and protein–protein interaction networks to identify a meditation-specific core network after an advanced 8-d Inner Engineering retreat program. We found the response to oxidative stress, detoxification, and cell cycle regulation pathways were down-regulated after meditation. Strikingly, 220 genes directly associated with immune response, including 68 genes related to interferon signaling, were up-regulated, with no significant expression changes in the inflammatory genes. This robust meditation-specific immune response network is significantly dysregulated in multiple sclerosis and severe COVID-19 patients. The work provides a foundation for understanding the effect of meditation and suggests that meditation as a behavioral intervention can voluntarily and nonpharmacologically improve the immune response for treating various conditions associated with excessive or persistent inflammation with a dampened immune system profile.

2021 ◽  
Author(s):  
Vijayendran Chandran ◽  
Mei-Ling Bermudez ◽  
Mert Koka ◽  
Dhanashri Pawale ◽  
Ramana Vishnubhotla ◽  
...  

The positive impact of meditation on human wellbeing is well documented, yet its molecular mechanisms are incompletely understood. We applied a comprehensive systems biology approach starting with whole blood gene expression profiling combined with multi-level bioinformatic analyses to characterize the co-expression, transcriptional, and protein-protein interaction networks to identify meditation-specific core network after an advanced 8-day Inner Engineering retreat program. We found the response to oxidative stress, detoxification, and cell cycle regulation pathways were downregulated after meditation. Strikingly, 220 genes directly associated with immune response, including 68 genes related to interferon (IFN) signaling were upregulated, with no significant expression changes in the inflammatory genes. This robust meditation-specific immune response network is significantly dysregulated in multiple sclerosis and severe COVID-19 patients. The work provides a foundation for understanding the effect of meditation and potential implications to voluntarily and non-pharmacologically improve the immune response before immunotherapy for many conditions, including multiple sclerosis and COVID-19 vaccination.


2018 ◽  
Vol 45 (2) ◽  
pp. 267 ◽  
Author(s):  
Parankusam Santisree ◽  
Pooja Bhatnagar-Mathur ◽  
Kiran K. Sharma

The molecular mechanisms and targets of nitric oxide (NO) are not fully known in plants. Our study reports the first large-scale quantitative proteomic analysis of NO donor responsive proteins in chickpea. Dose response studies carried out using NO donors, sodium nitroprusside (SNP), diethylamine NONOate (DETA) and S-nitrosoglutathione (GSNO) in chickpea genotype ICCV1882, revealed a dose dependent positive impact on seed germination and seedling growth. SNP at 0.1 mM concentration proved to be most appropriate following confirmation using four different chickpea genotypes. while SNP treatment enhanced the percentage of germination, chlorophyll and nitrogen contents in chickpea, addition of NO scavenger, cPTIO reverted its impact under abiotic stresses. Proteome profiling revealed 172 downregulated and 76 upregulated proteins, of which majority were involved in metabolic processes (118) by virtue of their catalytic (145) and binding (106) activity. A few crucial proteins such as S-adenosylmethionine synthase, dehydroascorbate reductase, pyruvate kinase fragment, 1-aminocyclopropane-1-carboxylic acid oxidase, 1-pyrroline-5-carboxylate synthetase were less abundant whereas Bowman-Birk type protease inhibitor, non-specific lipid transfer protein, chalcone synthase, ribulose-1-5-bisphosphate carboxylase oxygenase large subunit, PSII D2 protein were highly abundant in SNP treated samples. This study highlights the protein networks for a better understanding of possible NO induced regulatory mechanisms in plants.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhaojun Liu ◽  
Yang Chen ◽  
Tingting Pan ◽  
Jialin Liu ◽  
Rui Tian ◽  
...  

The central component of sepsis pathogenesis is inflammatory disorder, which is related to dysfunction of the immune system. However, the specific molecular mechanism of sepsis has not yet been fully elucidated. The aim of our study was to identify genes that are significantly changed during sepsis development, for the identification of potential pathogenic factors. Differentially expressed genes (DEGs) were identified in 88 control and 214 septic patient samples. Gene ontology (GO) and pathway enrichment analyses were performed using David. A protein-protein interaction (PPI) network was established using STRING and Cytoscape. Further validation was performed using real-time polymerase chain reaction (RT-PCR). We identified 37 common DEGs. GO and pathway enrichment indicated that enzymes and transcription factors accounted for a large proportion of DEGs; immune system and inflammation signaling demonstrated the most significant changes. Furthermore, eight hub genes were identified via PPI analysis. Interestingly, four of the top five upregulated and all downregulated DEGs were involved in immune and inflammation signaling. In addition, the most intensive hub gene AKT1 and the top DEGs in human clinical samples were validated using RT-PCR. This study explored the possible molecular mechanisms underpinning the inflammatory, immune, and PI3K/AKT pathways related to sepsis development.


2021 ◽  
Author(s):  
Yi Wang ◽  
Xiaoxia Wang ◽  
Laurence Don Wai Luu ◽  
Shaojin Chen ◽  
Jin Fu ◽  
...  

CoronaVac (Sinovac), an inactivated vaccine for SARS-CoV-2, has been widely used for immunization. However, analysis of the underlying molecular mechanisms driving CoronaVac-induced immunity is still limited. Here, we applied a systems biology approach to understand the mechanisms behind the adaptive immune response to CoronaVac in a cohort of 50 volunteers immunized with 2 doses of CoronaVac. Vaccination with CoronaVac led to an integrated immune response that included several effector arms of the adaptive immune system including specific IgM/IgG, humoral response and other immune response, as well as the innate immune system as shown by complement activation. Metabolites associated with immunity were also identified implicating the role of metabolites in the humoral response, complement activation and other immune response. Networks associated with the TCA cycle and amino acids metabolic pathways, such as phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and glycine, serine and threonine metabolism were tightly coupled with immunity. Critically, we constructed a multifactorial response network (MRN) to analyze the underlying interactions and compared the signatures affected by CoronaVac immunization and SARS-CoV-2 infection to further identify immune signatures and related metabolic pathways altered by CoronaVac immunization. These results suggest that protective immunity against SARS-CoV-2 can be achieved via multiple mechanisms and highlights the utility of a systems biology approach in defining molecular correlates of protection to vaccination.


Author(s):  
Diana Moreno Santillan ◽  
Tanya Lama ◽  
Yocelyn Gutiérrez Guerrero ◽  
Alexis Brown ◽  
Paul Donat ◽  
...  

Comprising more than 1400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity given small body size, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent lineages, reducing the scope of inferences on gene family evolution across the Order Chiroptera. We conducted an exhaustive comparative genomic study of 37 bat species encompassing a large number of lineages, with a particular emphasis on multi-gene family evolution across immune system and metabolic genes. In agreement with previous analyses, we found lineage-specific expansions of the APOBEC3 and MHC-I gene families, and loss of the proinflammatory PYHIN gene family. We inferred more than 1,000 gene losses unique to bats, including genes involved in the regulation of inflammasome pathways such as epithelial defense receptors, the natural killer gene complex and the interferon-gamma induced pathway. Gene set enrichment analyses revealed genes lost in bats are involved in defense response against pathogen-associated molecular patterns and damage-associated molecular patterns. Gene family evolution and selection analyses indicate bats have evolved fundamental functional differences compared to other mammals in both innate and adaptive immune system, with the potential to enhance anti-viral immune response while dampening inflammatory signaling. In addition, metabolic genes have experienced repeated expansions related to convergent shifts to plant-based diets. Our analyses support the hypothesis that, in tandem with flight, ancestral bats had evolved a unique set of immune adaptations whose functional implications remain to be explored.


2009 ◽  
Vol 05 (01) ◽  
pp. 40
Author(s):  
Adam Yagui-Beltrán ◽  
Lisa M Coussens ◽  
David M Jablons ◽  
◽  
◽  
...  

Lung cancer is the leading cause of all cancer deaths in the US. The international scientific and clinical community has made significant advances toward understanding specific molecular mechanisms underlying lung carcinogenesis; however, despite these insights and advances in surgery and chemoradiotherapy, the prognosis for non-small-cell lung cancer (NSCLC) remains poor. Nonetheless, significant effort is being focused on advancing translational research evaluating the efficacy of novel targeted therapeutic strategies for lung cancer. Illustrative examples of this include antagonists of the epidermal growth factor receptor (EGFR), tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib, and a diverse assortment of anti-angiogenic compounds targeting growth factors and/or their receptors that regulate tumorassociated angiogenic programs. In addition, with the increased awareness of the significant role chronically activated leukocytes play as potentiators of solid-tumor development, the role of innate and adaptive immune cells as regulators of lung carcinogenesis is being examined. While some of these studies are examining how novel therapeutic strategies may enhance the efficacy of lung cancer vaccines, others are evaluating the intrinsic characteristics of the immune response to lung cancer in order to identify rate-limiting molecular and/or cellular programs to target with novel anticancer therapeutics. In this article, we explore important aspects of the immune system and its role in regulating normal respiratory homeostasis compared with the immune response accompanying development of lung cancer. These hallmarks are then discussed in the context of recent efforts to develop lung cancer vaccines, where we have highlighted important concepts that must be taken into consideration for future development of novel therapeutic strategies and clinical trials assessing their efficacy.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Pankita H. Pandya ◽  
Mary E. Murray ◽  
Karen E. Pollok ◽  
Jamie L. Renbarger

Interplay among immune activation and cancer pathogenesis provides the framework for a novel subspecialty known as immunooncology. In the rapidly evolving field of immunooncology, understanding the tumor-specific immune response enhances understanding of cancer resistance. This review highlights the fundamentals of incorporating precision medicine to discover new immune biomarkers and predictive signatures. Using a personalized approach may have a significant, positive impact on the use of oncolytics to better guide safer and more effective therapies.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Nyasha Sakadzo ◽  
Rumbidzai Blessing Nhara ◽  
Andrew Tapiwa Kugedera ◽  
Ashel Musara ◽  
Zakio Makuvara

African Indigenous Vegetables are assert to cope with climate variability beside their great potential as both food and medicine in Zimbabwe. They can be easily grown in drought prone areas with low rainfall as they are resistant to adverse environmental factors. Inimitable opportunities are offered through cultivation of AIVs to diversify farming systems so as to ensure food security and are cheap alternatives as compared to their expensive exotic counterparts. Alternative approaches to reduce escalating numbers of current Covid-19 patients and death is to introduce nutrient intervention through rediscovering of pride in agriculture through cultivation and commercialisation of AIVs in Zimbabwe. AIVs have great potential to improve immune response by supplementing dietary requirements (micronutrients) of an individual and can have a positive impact on COVID-19 outcome as they play a significant role in the immune system. AIVs have antifungal, acaricidal, antiviral, anticancer and act as immune stimulants. There is need for persuasive research based information, suitable national legislation and information campaigns on cultivation and consumption of AIVs in Zimbabwe.


Author(s):  
Divya Kanchibhotla ◽  
Sheel Galada Parekh ◽  
Prateek Harsora ◽  
Shashank Kulkarni

Abstract Purpose Disturbed sleep and other sleep-related problems have a negative impact on the human mind and body. Meditation practices are reported to improve physiological functions and might also have a positive impact on regulating sleep. This research investigates the efficacy of an advanced mind–body medicine intervention, called Hollow and Empty Meditation (HEM), on improving sleep quality. Methods The study was a single-arm open-trial pilot study which assessed 413 adults who underwent a 4-day meditation retreat offered by the Art of Living, called the Advanced Meditation Program (AMP), and experienced a novel meditation—HEM. Results were measured using a self-report questionnaire, the Pittsburgh Sleep Quality Index (PSQI), which was administered to the participants thrice: on the first day of the program (pre-intervention), immediately after program (post-intervention/Day 4), and on Day 40 (D40) after the program. Results There was a significant difference in pre–post and pre–D40 scores in the population. Both sleep quality and sleep duration showed an improvement immediately after the AMP (post), and the residual impact was still experienced at D40, especially with the group with age > 36 years. Conclusions The use of HEM resulted in improvement in sleep quality not just immediately after the program, but had longer-term effects that extended over several weeks, helping remediate sleep problems among younger adults as well as older ones. It resulted in improvement in sleep quality as well as reduction in sleep-related daytime impairment, which have substantial constructive implications for well-being, everyday functioning and quality of life.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaokai Bao ◽  
Yan Li ◽  
Jianbai Zhang ◽  
Xipan Chen ◽  
Xiaohui Xu ◽  
...  

Immune defense systems are indispensable for living organisms. Within an immune network, problems with any given link can impact the normal life activities of an organism. Amphioctopus fangsiao is a cephalopod that exists widely throughout the world’s oceans. Because of its nervous system and locomotive organs, it has become increasingly studied in recent years. Vibrio anguillarum is one of the most common pathogenic bacteria in aquaculture organisms. It is highly infectious and can infect almost all aquaculture organisms. V. anguillarum infection can cause many adverse biological phenomena, including tissue bleeding. Study the immune response after V. anguillarum infection would help us to understand the molecular mechanisms of immune response in aquaculture organisms. In this research, we infected the primary incubation A. fangsiao with V. anguillarum for 24 h. We analyzed gene expression in A. fangsiao larvae via transcriptome profiles at 0, 4, 12, and 24 h after hatching, and 1,385, 734, and 6,109 differentially expressed genes (DEGs) were identified at these three time points. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify immune-related DEGs. Protein–protein interaction networks were constructed to examine interactions between immune-related genes. Twenty hub genes involved in multiple KEGG signaling pathways or with multiple protein–protein interaction relationships were identified, and their differential expression verified by quantitative RT-PCR. We first studied V. anguillarum infection of A. fangsiao larvae by means of protein–protein interaction networks. The results provide valuable genetic resources for understanding immunity in molluscan larvae. These data serve as a theoretical basis for the artificial breeding of A. fangsiao.


Sign in / Sign up

Export Citation Format

Share Document