scholarly journals Spin-textured Chern bands in AB-stacked transition metal dichalcogenide bilayers

2021 ◽  
Vol 118 (36) ◽  
pp. e2112673118
Author(s):  
Yang Zhang ◽  
Trithep Devakul ◽  
Liang Fu

While transition-metal dichalcogenide (TMD)–based moiré materials have been shown to host various correlated electronic phenomena, topological states have not been experimentally observed until now [T. Li et al., Quantum anomalous Hall effect from intertwined moiré bands. arXiv [Preprint] (2021). https://arxiv.org/abs/2107.01796 (Accessed 5 July 2021)]. In this work, using first-principle calculations and continuum modeling, we reveal the displacement field–induced topological moiré bands in AB-stacked TMD heterobilayer MoTe2/WSe2. Valley-contrasting Chern bands with nontrivial spin texture are formed from interlayer hybridization between MoTe2 and WSe2 bands of nominally opposite spins. Our study establishes a recipe for creating topological bands in AB-stacked TMD bilayers in general, which provides a highly tunable platform for realizing quantum-spin Hall and interaction-induced quantum anomalous Hall effects.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Trithep Devakul ◽  
Valentin Crépel ◽  
Yang Zhang ◽  
Liang Fu

AbstractThe long-wavelength moiré superlattices in twisted 2D structures have emerged as a highly tunable platform for strongly correlated electron physics. We study the moiré bands in twisted transition metal dichalcogenide homobilayers, focusing on WSe2, at small twist angles using a combination of first principles density functional theory, continuum modeling, and Hartree-Fock approximation. We reveal the rich physics at small twist angles θ < 4∘, and identify a particular magic angle at which the top valence moiré band achieves almost perfect flatness. In the vicinity of this magic angle, we predict the realization of a generalized Kane-Mele model with a topological flat band, interaction-driven Haldane insulator, and Mott insulators at the filling of one hole per moiré unit cell. The combination of flat dispersion and uniformity of Berry curvature near the magic angle holds promise for realizing fractional quantum anomalous Hall effect at fractional filling. We also identify twist angles favorable for quantum spin Hall insulators and interaction-induced quantum anomalous Hall insulators at other integer fillings.


Author(s):  
Hong Cui ◽  
yazhou wang ◽  
Tong Liu ◽  
Yunjian Chen ◽  
Pengyue Shan ◽  
...  

In order to explore the photocatalytic hydrogen production efficiency of MoS2/WSe2 heterostructure (A2-MWS4) as photocatalysts, It is highly desirable to study the photogenerated exciton dissociation related to photocatalysis. The electronic...


Author(s):  
Yang Yang ◽  
Jimin Shang ◽  
Zijiong Li ◽  
Hong Yan Lu ◽  
Yandong Ma

A new serial of two-dimensional transition metal hydrides MH$_3$ (M = Co, Rh, Ir) is investigated by first principle calculations. Electronic structures, phonon dispersion, optical absorptions, and carrier mobilities are...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengyao Li ◽  
Ivan Sinev ◽  
Fedor Benimetskiy ◽  
Tatyana Ivanova ◽  
Ekaterina Khestanova ◽  
...  

AbstractThe rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. Topological polaritons (TPs) offer an ideal platform in this context, with unique properties stemming from resilient topological states of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) as a promising platform for topological polaritonics. We show that the strong coupling between topological photonic modes of the metasurface and excitons in TMDs yields a topological polaritonic Z2 phase. We experimentally confirm the emergence of one-way spin-polarized edge TPs in metasurfaces integrating MoSe2 and WSe2. Combined with the valley polarization in TMD monolayers, the proposed system enables an approach to engage the photonic angular momentum and valley and spin of excitons, offering a promising platform for photonic/solid-state interfaces for valleytronics and spintronics.


Sign in / Sign up

Export Citation Format

Share Document