scholarly journals Locust density shapes energy metabolism and oxidative stress resulting in divergence of flight traits

2021 ◽  
Vol 119 (1) ◽  
pp. e2115753118
Author(s):  
Baozhen Du ◽  
Ding Ding ◽  
Chuan Ma ◽  
Wei Guo ◽  
Le Kang

Flight ability is essential for the enormous diversity and evolutionary success of insects. The migratory locusts exhibit flight capacity plasticity in gregarious and solitary individuals closely linked with different density experiences. However, the differential mechanisms underlying flight traits of locusts are largely unexplored. Here, we investigated the variation of flight capacity by using behavioral, physiological, and multiomics approaches. Behavioral assays showed that solitary locusts possess high initial flight speeds and short-term flight, whereas gregarious locusts can fly for a longer distance at a relatively lower speed. Metabolome–transcriptome analysis revealed that solitary locusts have more active flight muscle energy metabolism than gregarious locusts, whereas gregarious locusts show less evidence of reactive oxygen species production during flight. The repression of metabolic activity by RNA interference markedly reduced the initial flight speed of solitary locusts. Elevating the oxidative stress by paraquat injection remarkably inhibited the long-distance flight of gregarious locusts. In respective crowding and isolation treatments, energy metabolic profiles and flight traits of solitary and gregarious locusts were reversed, indicating that the differentiation of flight capacity depended on density and can be reshaped rapidly. The density-dependent flight traits of locusts were attributed to the plasticity of energy metabolism and degree of oxidative stress production but not energy storage. The findings provided insights into the mechanism underlying the trade-off between velocity and sustainability in animal locomotion and movement.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Damian Jozef Flis ◽  
Katarzyna Dzik ◽  
Jan Jacek Kaczor ◽  
Malgorzata Halon-Golabek ◽  
Jedrzej Antosiewicz ◽  
...  

Recently, in terms of amyotrophic lateral sclerosis (ALS), much attention has been paid to the cell structures formed by the mitochondria and the endoplasmic reticulum membranes (MAMs) that are involved in the regulation of Ca2+ signaling, mitochondrial bioenergetics, apoptosis, and oxidative stress. We assumed that remodeling of these structures via swim training may accompany the prolongation of the ALS lifespan. In the present study, we used transgenic mice with the G93A hmSOD1 gene mutation. We examined muscle energy metabolism, oxidative stress parameters, and markers of MAMs (Caveolin-1 protein level and cholesterol content in crude mitochondrial fraction) in groups of mice divided according to disease progression and training status. The progression of ALS was related to the lowering of Caveolin-1 protein levels and the accumulation of cholesterol in a crude mitochondrial fraction. These changes were associated with aerobic and anaerobic energy metabolism dysfunction and higher oxidative stress. Our data indicated that swim training prolonged the lifespan of ALS mice with accompanying changes in MAM components. Swim training also maintained mitochondrial function and lowered oxidative stress. These data suggest that modification of MAMs might play a crucial role in the exercise-induced deceleration of ALS development.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1682
Author(s):  
Olga V. Balberova ◽  
Evgeny V. Bykov ◽  
German V. Medvedev ◽  
Margarita A. Zhogina ◽  
Kirill V. Petrov ◽  
...  

All biological processes associated with high sports performance, including energy metabolism, are influenced by genetics. DNA sequence variations in such genes, single nucleotide variants (SNVs), could confer genetic advantages that can be exploited to achieve optimal athletic performance. Ignorance of these features can create genetic “barriers” that prevent professional athletes from pursuing a career in sports. Predictive Genomic DNA Profiling reveals single nucleotide variations (SNV) that may be associated with better suitability for endurance, strength and speed sports. (1) Background: To conduct a research on candidate genes associated with regulation of skeletal muscle energy metabolism among athletes. (2) Methods: We have searched for articles in SCOPUS, Web of Science, Google Scholar, Clinical keys, PubMed, e-LIBRARY databases for the period of 2010–2020 using keywords and keywords combinations; (4) Conclusions: Identification of genetic markers associated with the regulation of energy metabolism in skeletal muscles can help sports physicians and coaches develop personalized strategies for selecting children, teenagers and young adults for endurance, strength and speed sports (such as jogging, middle or long distance runs). However, the multifactorial aspect of sport performances, including impact of genetics, epigenetics, environment (training and etc.), is important for personalized strategies for selecting of athletes. This approach could improve sports performance and reduce the risk of sports injuries to the musculoskeletal system.


2019 ◽  
Vol 20 (2) ◽  
pp. 233 ◽  
Author(s):  
Damian Jozef Flis ◽  
Katarzyna Dzik ◽  
Jan Jacek Kaczor ◽  
Karol Cieminski ◽  
Malgorzata Halon-Golabek ◽  
...  

Metabolic reprogramming in skeletal muscles in the human and animal models of amyotrophic lateral sclerosis (ALS) may be an important factor in the diseases progression. We hypothesized that swim training, a modulator of cellular metabolism via changes in muscle bioenergetics and oxidative stress, ameliorates the reduction in muscle strength in ALS mice. In this study, we used transgenic male mice with the G93A human SOD1 mutation B6SJL-Tg (SOD1G93A) 1Gur/J and wild type B6SJL (WT) mice. Mice were subjected to a grip strength test and isolated skeletal muscle mitochondria were used to perform high-resolution respirometry. Moreover, the activities of enzymes involved in the oxidative energy metabolism and total sulfhydryl groups (as an oxidative stress marker) were evaluated in skeletal muscle. ALS reduces muscle strength (−70% between 11 and 15 weeks, p < 0.05), modulates muscle metabolism through lowering citrate synthase (CS) (−30% vs. WT, p = 0.0007) and increasing cytochrome c oxidase and malate dehydrogenase activities, and elevates oxidative stress markers in skeletal muscle. Swim training slows the reduction in muscle strength (−5% between 11 and 15 weeks) and increases CS activity (+26% vs. ALS I, p = 0.0048). Our findings indicate that swim training is a modulator of skeletal muscle energy metabolism with concomitant improvement of skeletal muscle function in ALS mice.


2008 ◽  
Vol 376 (5) ◽  
pp. 1224-1236 ◽  
Author(s):  
Suguru Koyama ◽  
Shoji Hata ◽  
Christian C. Witt ◽  
Yasuko Ono ◽  
Stefanie Lerche ◽  
...  

Author(s):  
G. Dietze ◽  
E. Maerker ◽  
C. Lodri ◽  
R. Schifman ◽  
M. Wicklmayr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document