scholarly journals Members of the KCTD family are major regulators of cAMP signaling

2021 ◽  
Vol 119 (1) ◽  
pp. e2119237119
Author(s):  
Brian S. Muntean ◽  
Subhi Marwari ◽  
Xiaona Li ◽  
Douglas C. Sloan ◽  
Brian D. Young ◽  
...  

Cyclic adenosine monophosphate (cAMP) is a pivotal second messenger with an essential role in neuronal function. cAMP synthesis by adenylyl cyclases (AC) is controlled by G protein–coupled receptor (GPCR) signaling systems. However, the network of molecular players involved in the process is incompletely defined. Here, we used CRISPR/Cas9–based screening to identify that members of the potassium channel tetradimerization domain (KCTD) family are major regulators of cAMP signaling. Focusing on striatal neurons, we show that the dominant isoform KCTD5 exerts its effects through an unusual mechanism that modulates the influx of Zn2+ via the Zip14 transporter to exert unique allosteric effects on AC. We further show that KCTD5 controls the amplitude and sensitivity of stimulatory GPCR inputs to cAMP production by Gβγ-mediated AC regulation. Finally, we report that KCTD5 haploinsufficiency in mice leads to motor deficits that can be reversed by chelating Zn2+. Together, our findings uncover KCTD proteins as major regulators of neuronal cAMP signaling via diverse mechanisms.

2011 ◽  
Vol 300 (5) ◽  
pp. L667-L678 ◽  
Author(s):  
Sarah L. Sayner

The presence of excess fluid in the interstitium and air spaces of the lung presents severe restrictions to gas exchange. The pulmonary endothelial barrier regulates the flux of fluid and plasma proteins from the vascular space into the underlying tissue. The integrity of this endothelial barrier is dynamically regulated by transitions in cAMP (3′,5′-cyclic adenosine monophosphate), which are synthesized in discrete subcellular compartments. Cyclic AMP generated in the subplasma membrane compartment acts through PKA and Epac (exchange protein directly activated by cAMP) to tighten cell adhesions, strengthen cortical actin, reduce actomyosin contraction, and decrease permeability. Confining cAMP within the subplasma membrane space is critical to its barrier-protective properties. When cAMP escapes the near membrane compartment and gains access to the cytosolic compartment, or when soluble adenylyl cyclases generate cAMP within the cytosolic compartment, this second messenger activates established cytosolic cAMP signaling cascades to perturb the endothelial barrier through PKA-mediated disruption of microtubules. Thus the concept of cAMP compartmentalization in endothelial barrier regulation is gaining momentum and new possibilities are being unveiled for cytosolic cAMP signaling with the emergence of the bicarbonate-regulated mammalian soluble adenylyl cyclase (sAC or AC10).


2021 ◽  
Vol 11 ◽  
Author(s):  
Ward Vleeshouwers ◽  
Koen van den Dries ◽  
Sandra de Keijzer ◽  
Ben Joosten ◽  
Diane S. Lidke ◽  
...  

Prostaglandin E2 (PGE2) is a lipid mediator that modulates the function of myeloid immune cells such as macrophages and dendritic cells (DCs) through the activation of the G protein-coupled receptors EP2 and EP4. While both EP2 and EP4 signaling leads to an elevation of intracellular cyclic adenosine monophosphate (cAMP) levels through the stimulating Gαs protein, EP4 also couples to the inhibitory Gαi protein to decrease the production of cAMP. The receptor-specific contributions to downstream immune modulatory functions are still poorly defined. Here, we employed quantitative imaging methods to characterize the early EP2 and EP4 signaling events in myeloid cells and their contribution to the dissolution of adhesion structures called podosomes, which is a first and essential step in DC maturation. We first show that podosome loss in DCs is primarily mediated by EP4. Next, we demonstrate that EP2 and EP4 signaling leads to distinct cAMP production profiles, with EP4 inducing a transient cAMP response and EP2 inducing a sustained cAMP response only at high PGE2 levels. We further find that simultaneous EP2 and EP4 stimulation attenuates cAMP production, suggesting a reciprocal control of EP2 and EP4 signaling. Finally, we demonstrate that efficient signaling of both EP2 and EP4 relies on an intact microtubule network. Together, these results enhance our understanding of early EP2 and EP4 signaling in myeloid cells. Considering that modulation of PGE2 signaling is regarded as an important therapeutic possibility in anti-tumor immunotherapy, our findings may facilitate the development of efficient and specific immune modulators of PGE2 receptors.


2020 ◽  
Author(s):  
Ward Vleeshouwers ◽  
Koen van den Dries ◽  
Sandra de Keijzer ◽  
Ben Joosten ◽  
Diane S. Lidke ◽  
...  

AbstractProstaglandin E2 (PGE2) is a lipid mediator that modulates the function of myeloid immune cells such as macrophages and dendritic cells (DCs) through the activation of the G protein-coupled receptors EP2 and EP4. While both EP2 and EP4 signalling leads to an elevation of intracellular cyclic adenosine monophosphate (cAMP) levels through the stimulating Gαs protein, EP4 also couples to the inhibitory Gαi protein to decrease the production of cAMP. The receptor-specific contributions to downstream immune modulatory functions are still poorly defined. Here, we employed quantitative imaging methods to characterize the early EP2 and EP4 signalling events in myeloid cells and their contribution to the dissolution of adhesion structures called podosomes, which is a first and essential step in DC maturation. We first show that podosome loss in DCs is primarily mediated by EP4. Next, we demonstrate that EP2 and EP4 signalling leads to distinct cAMP production profiles, with EP4 inducing a transient cAMP response and EP2 inducing a sustained cAMP response only at high PGE2 levels. We further find that simultaneous EP2 and EP4 stimulation attenuates cAMP production, suggesting a reciprocal control of EP2 and EP4 signaling. Finally, we demonstrate that efficient signaling of both EP2 and EP4 relies on an intact microtubule network. Together, these results enhance our understanding of early EP2 and EP4 signalling in myeloid cells. Considering that modulation of PGE2 signalling is regarded as an important therapeutic possibility in anti-tumour immunotherapy, our findings may facilitate the development of efficient and specific immune modulators of PGE2 receptors.


2019 ◽  
Vol 47 (6) ◽  
pp. 1749-1756 ◽  
Author(s):  
Autumn N. Marsden ◽  
Carmen W. Dessauer

Adenylyl cyclases (ACs) convert ATP into the classical second messenger cyclic adenosine monophosphate (cAMP). Cardiac ACs, specifically AC5, AC6, and AC9, regulate cAMP signaling controlling functional outcomes such as heart rate, contractility and relaxation, gene regulation, stress responses, and glucose and lipid metabolism. With so many distinct functional outcomes for a single second messenger, the cell creates local domains of cAMP signaling to correctly relay signals. Targeting of ACs to A-kinase anchoring proteins (AKAPs) not only localizes ACs, but also places them within signaling nanodomains, where cAMP levels and effects can be highly regulated. Here we will discuss the recent work on the structure, regulation and physiological functions of AC9 in the heart, where it accounts for <3% of total AC activity. Despite the small contribution of AC9 to total cardiac cAMP production, AC9 binds and regulates local PKA phosphorylation of Yotiao-IKs and Hsp20, demonstrating a role for nanometric targeting of AC9.


2010 ◽  
Vol 18 (4) ◽  
pp. 6-8
Author(s):  
Stephen W. Carmichael

Some of the receptors on the surface of cardiac muscle cells (cardiomyocytes) mediate the response of these cells to catecholamines by causing the production of the common second messenger cyclic adenosine monophosphate (cAMP). An example of such receptors are the β1- and β2-adrenergic receptors (βARs) that are heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors. Selective stimulation of these two receptor subtypes leads to distinct physiological and pathophysiological responses, but their precise location on the surface of cardiomyocytes has not been correlated with these responses. In an ingenious combination of techniques, Viacheslav Nikolaev, Alexey Moshkov, Alexander Lyon, Michele Miragoli, Pavel Novak, Helen Paur, Martin Lohse, Yuri Korchev, Sian Harding, and Julia Gorelik have mapped the function of these receptors for the first time.


1998 ◽  
Vol 89 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Richard C. Prielipp ◽  
Drew A. MacGregor ◽  
Roger L. Royster ◽  
Neal D. Kon ◽  
Michael H. Hines ◽  
...  

Background Patients may receive more than one positive inotropic drug to improve myocardial function and cardiac output, with the assumption that the effects of two drugs are additive. The authors hypothesized that combinations of dobutamine and epinephrine would produce additive biochemical and hemodynamic effects. Methods The study was performed in two parts. Phase 1 used human lymphocytes in an in vitro model of cyclic adenosine monophosphate (cAMP) generation in response to dobutamine (10(-8) to 10(-4) M) or epinephrine (10(-9) M to 10(-5) M), and dobutamine and epinephrine together. Phase 2 was a clinical study in patients after aortocoronary artery bypass in which isobolographic analysis compared the cardiotonic effects of dobutamine (1.25, 2.5, or 5 microg x kg(-1) x min(-1)) or epinephrine (10, 20, or 40 ng x kg(-l) x min(-1)), alone or in combination. Results In phase 1, dobutamine increased cAMP production 41%, whereas epinephrine increased cAMP concentration approximately 200%. However, when epinephrine (10(-6) M) and dobutamine were combined, dobutamine reduced cAMP production at concentrations between 10(-6) to 10(-4) M (P = 0.001). In patients, 1.25 to 5 microg x kg(-1) x min(-1) dobutamine increased the cardiac index (CI) 15-28%. Epinephrine also increased the CI with each increase in dose. However, combining epinephrine with the two larger doses of dobutamine (2.5 and 5microg x kg(-1) x mi(-1)) did not increase the CI beyond that achieved with epinephrine and the lowest dose of dobutamine (1.25 microg x kg(-1) x min(-1)). In addition, the isobolographic analysis for equieffective concentrations of dobutamine and epinephrine suggests subadditive effects. Conclusions Dobutamine inhibits epinephrine-induced production of cAMP in human lymphocytes and appears to be subadditive by clinical and isobolographic analyses of the cardiotonic effects. These findings suggest that combinations of dobutamine and epinephrine may be less than additive.


2011 ◽  
Vol 193 (6) ◽  
pp. 1009-1020 ◽  
Author(s):  
Martijn Gloerich ◽  
Marjolein J. Vliem ◽  
Esther Prummel ◽  
Lars A.T. Meijer ◽  
Marije G.A. Rensen ◽  
...  

Cyclic adenosine monophosphate (cAMP) is a second messenger that relays a wide range of hormone responses. In this paper, we demonstrate that the nuclear pore component RanBP2 acts as a negative regulator of cAMP signaling through Epac1, a cAMP-regulated guanine nucleotide exchange factor for Rap. We show that Epac1 directly interacts with the zinc fingers (ZNFs) of RanBP2, tethering Epac1 to the nuclear pore complex (NPC). RanBP2 inhibits the catalytic activity of Epac1 in vitro by binding to its catalytic CDC25 homology domain. Accordingly, cellular depletion of RanBP2 releases Epac1 from the NPC and enhances cAMP-induced Rap activation and cell adhesion. Epac1 also is released upon phosphorylation of the ZNFs of RanBP2, demonstrating that the interaction can be regulated by posttranslational modification. These results reveal a novel mechanism of Epac1 regulation and elucidate an unexpected link between the NPC and cAMP signaling.


2021 ◽  
Author(s):  
Kaley M. Wilburn ◽  
Christine R. Montague ◽  
Bo Qin ◽  
Ashley K. Woods ◽  
Melissa S. Love ◽  
...  

There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3’, 5’-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required for cholesterol metabolism. Finally, in this work the pharmacokinetic properties of Rv1625c agonists are optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a novel role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.


Gut ◽  
1992 ◽  
Vol 33 (3) ◽  
pp. 424-424
Author(s):  
A Sarem-Aslani ◽  
C Bergmann ◽  
S Walker ◽  
D Ratge ◽  
U Klotz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document