scholarly journals The role of the T-cell receptor in thymocyte maturation: effects in vivo of anti-receptor antibody.

1986 ◽  
Vol 83 (22) ◽  
pp. 8728-8732 ◽  
Author(s):  
M. McDuffie ◽  
W. Born ◽  
P. Marrack ◽  
J. Kappler
1997 ◽  
Vol 186 (9) ◽  
pp. 1461-1467 ◽  
Author(s):  
Marc A. Berger ◽  
Vibhuti Davé ◽  
Michele R. Rhodes ◽  
Gayle C. Bosma ◽  
Melvin J. Bosma ◽  
...  

Maturation of immature CD4−CD8− (DN) thymocytes to the CD4+CD8+ (DP) stage of development is driven by signals transduced through a pre–T cell receptor (TCR) complex, whose hallmark is a novel subunit termed pre-Tα (pTα). However, the precise role of pre-TCRs in mediating the DN to DP transition remains unclear. Moreover, progress in understanding pre-TCR function has been hampered thus far because previous attempts to demonstrate expression of pTα-containing pre-TCRs on the surface of normal thymocytes have been unsuccessful. In this report, we demonstrate for the first time that pTα-containing pre-TCR complexes are expressed at low levels on the surface of primary thymocytes and that these pre-TCR complexes comprise a disulfide-linked pTα–TCR-β heterodimer associated not only with CD3-γ and -ε, as previously reported, but also with ζ and δ. Interestingly, while CD3-δ is associated with the pre-TCR complex, it is not required for pre-TCR function, as evidenced by the generation of normal numbers of DP thymocytes in CD3-δ–deficient mice. The fact that any of the signaling components of the pre-TCR are dispensable for pre-TCR function is indeed surprising, given that few pre-TCR complexes are actually expressed on the surface of primary thymocytes in vivo. Thus, pre-TCRs do not require the full array of TCR-associated signaling subunits (γ, δ, ε, and ζ), possibly because pTα itself possesses signaling capabilities.


1997 ◽  
Vol 63 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Wil J.M. Tax ◽  
Wim P.M. Tamboer ◽  
Cor W.M. Jacobs ◽  
Leon A.M. Frenken ◽  
Robert A.P. Koene

2002 ◽  
Vol 196 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Mariëlle C. Haks ◽  
Elsa Pépin ◽  
Jeroen H.N. van den Brakel ◽  
Sigrid A.A. Smeele ◽  
Stanley M. Belkowski ◽  
...  

The immunoreceptor tyrosine-based activation motifs (ITAMs) in the CD3 chains associated with the T cell receptor (TCR) are crucial for TCR signaling. To probe the role of the CD3γ–ITAM in T cell development, we created knock-in mice in which the CD3γ chain of the TCR complex is replaced by a mutant signaling-deficient CD3γ chain, lacking the CD3γ–ITAM. This mutation results in considerable impairment in positive selection in the polyclonal TCR repertoire. When CD3γ–ΔITAM mice are crossed to mice expressing transgenic F5 TCRs, their thymocytes are completely unable to perform positive selection in vivo in response to intrathymic ligands. Also, the in vitro positive selection response of double-positive (DP) thymocytes with F5–CD3γ–ΔITAM mutant receptors to their agonist ligand and many of its variants is severely impaired or abrogated. Yet, the binding and dissociation constants of agonist ligands for the F5 receptor are not affected by the CD3γ–ΔITAM mutation. Furthermore, DP thymocytes with mutant receptors can respond to agonist ligand with normal antigen sensitivity and to normal levels, as shown by their ability to induce CD69 up-regulation, TCR down-regulation, negative selection, and ZAP70 and c-Jun NH2-terminal kinase activation. In sharp contrast, induction of extracellular signal-regulated kinase (ERK) activation and linker for activation of T cells (LAT) phosphorylation are severely impaired in these cells. Together, these findings underscore that intrinsic properties of the TCR–CD3 complex regulate selection at the DP checkpoint. More importantly, this analysis provides the first direct genetic evidence for a role of the CD3γ–ITAM in TCR-driven thymocyte selection.


2002 ◽  
Vol 22 (8) ◽  
pp. 2673-2686 ◽  
Author(s):  
Liangtang Wu ◽  
Jun Fu ◽  
Shi-Hsiang Shen

ABSTRACT CD45 plays a critical role in T-cell receptor (TCR)-mediated signaling. In a yeast two-hybrid screen, SKAP55, the Src kinase-associated phosphoprotein of unknown function, was found as a substrate which associated with CD45 in vivo. Mutational analysis demonstrated the pivotal role of Tyr-232 in SKAP55 in the association with CD45. In Jurkat cells, anti-CD3 antibody stimulation promoted SKAP55 tyrosine phosphorylation and translocation from the cytoplasm to the membrane. Overexpression of SKAP55 in these cells induced transcriptional activation of the IL-2 promoter, while mutant SKAP55-Y232F totally suppressed the promoter activity. Furthermore, overexpression of SKAP55-Y232F also caused the tyrosine hyperphosphorylation of Fyn with a decreased kinase activity. Thus, SKAP55 is an essential adapter to couple CD45 with the Src family kinases for dephosphorylation and, thus, positively regulates TCR signaling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Koen Debackere ◽  
Lukas Marcelis ◽  
Sofie Demeyer ◽  
Marlies Vanden Bempt ◽  
Nicole Mentens ◽  
...  

AbstractPeripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with poor prognosis. Up to 30% of PTCL lack distinctive features and are classified as PTCL, not otherwise specified (PTCL-NOS). To further improve our understanding of the genetic landscape and biology of PTCL-NOS, we perform RNA-sequencing of 18 cases and validate results in an independent cohort of 37 PTCL cases. We identify FYN-TRAF3IP2, KHDRBS1-LCK and SIN3A-FOXO1 as new in-frame fusion transcripts, with FYN-TRAF3IP2 as a recurrent fusion detected in 8 of 55 cases. Using ex vivo and in vivo experiments, we demonstrate that FYN-TRAF3IP2 and KHDRBS1-LCK activate signaling pathways downstream of the T cell receptor (TCR) complex and confer therapeutic vulnerability to clinically available drugs.


2021 ◽  
Vol 22 (5) ◽  
pp. 2713
Author(s):  
Sun-Hye Shin ◽  
Kyung-Ah Cho ◽  
Hee-Soo Yoon ◽  
So-Yeon Kim ◽  
Hee-Yeon Kim ◽  
...  

(1) Background: six mammalian ceramide synthases (CerS1–6) determine the acyl chain length of sphingolipids (SLs). Although ceramide levels are increased in murine allergic asthma models and in asthmatic patients, the precise role of SLs with specific chain lengths is still unclear. The role of CerS2, which mainly synthesizes C22–C24 ceramides, was investigated in immune responses elicited by airway inflammation using CerS2 null mice. (2) Methods: asthma was induced in wild type (WT) and CerS2 null mice with ovalbumin (OVA), and inflammatory cytokines and CD4 (cluster of differentiation 4)+ T helper (Th) cell profiles were analyzed. We also compared the functional capacity of CD4+ T cells isolated from WT and CerS2 null mice. (3) Results: CerS2 null mice exhibited milder symptoms and lower Th2 responses than WT mice after OVA exposure. CerS2 null CD4+ T cells showed impaired Th2 and increased Th17 responses with concomitant higher T cell receptor (TCR) signal strength after TCR stimulation. Notably, increased Th17 responses of CerS2 null CD4+ T cells appeared only in TCR-mediated, but not in TCR-independent, treatment. (4) Conclusions: altered Th2/Th17 immune response with higher TCR signal strength was observed in CerS2 null CD4+ T cells upon TCR stimulation. CerS2 and very-long chain SLs may be therapeutic targets for Th2-related diseases such as asthma.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2851-2858 ◽  
Author(s):  
Yukari Okamoto ◽  
Daniel C. Douek ◽  
Richard D. McFarland ◽  
Richard A. Koup

Abstract Immune reconstitution is a critical component of recovery after treatment of human immunodeficiency virus (HIV) infection, cancer chemotherapy, and hematopoietic stem cell transplantation. The ability to enhance T-cell production would benefit such treatment. We examined the effects of exogenous interleukin-7 (IL-7) on apoptosis, proliferation, and the generation of T-cell receptor rearrangement excision circles (TRECs) in human thymus. Quantitative polymerase chain reaction demonstrated that the highest level of TRECs (14 692 copies/10 000 cells) was present in the CD1a+CD3−CD4+CD8+stage in native thymus, suggesting that TREC generation occurred following the cellular division in this subpopulation. In a thymic organ culture system, exogenous IL-7 increased the TREC frequency in fetal as well as infant thymus, indicating increased T-cell receptor (TCR) rearrangement. Although this increase could be due to the effect of IL-7 to increase thymocyte proliferation and decrease apoptosis of immature CD3− cells, the in vivo experiments using NOD/LtSz-scid mice given transplants of human fetal thymus and liver suggested that IL-7 can also directly enhance TREC generation. Our results provide compelling evidence that IL-7 has a direct effect on increasing TCR-αβ rearrangement and indicate the potential use of IL-7 for enhancing de novo naı̈ve T-cell generation in immunocompromised patients.


Sign in / Sign up

Export Citation Format

Share Document