scholarly journals Cloning and characterization of subunit genes of ribonucleotide reductase, a cell-cycle-regulated enzyme, from Plasmodium falciparum.

1993 ◽  
Vol 90 (24) ◽  
pp. 12020-12024 ◽  
Author(s):  
D. Chakrabarti ◽  
S. M. Schuster ◽  
R. Chakrabarti
Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1280-1280
Author(s):  
Nirmalya SAHA ◽  
James Ropa ◽  
Lili Chen ◽  
Hsiang-Yu Hu ◽  
Maria Mysliwski ◽  
...  

Abstract The Polymerase Associated Factor 1 complex (PAF1c) functions at the interface of epigenetics and gene transcription. The PAF1c is a multi-protein complex composed of Paf1, Cdc73, Leo1, Ctr9, Rtf1 and WDR61, which have all been shown to play a role in disease progression and different types of cancer. Previous reports demonstrated that the PAF1c is required for MLL-fusion driven acute myeloid leukemia. This is due, in part, to a direct interaction between the PAF1c and wild type MLL or MLL fusion proteins. Importantly, targeted disruption of the PAF1c-MLL interaction impairs the growth of MLL-fusion leukemic cells but is tolerated by normal hematopoietic stem cells. These data point to differential functions for the PAF1c in normal and malignant hematopoietic cells that may be exploited for therapeutic purposes. However, a detailed exploration of the PAF1c in normal hematopoiesis is currently lacking. Here, we utilize a mouse genetic model to interrogate the role of the PAF1c subunit, Cdc73, in the development and sustenance of normal hematopoiesis. Using hematopoietic-specific constitutive and conditional drivers to express Cre recombinase, we efficiently excise floxed alleles of Cdc73 in hematopoietic cells. VavCre mediated excision of Cdc73 results in embryonic lethality due to hematopoietic failure. Characterization of the hematopoietic system demonstrated that cKit+ hematopoietic stem and progenitor cells (HSPC) are depleted due to Cdc73 knockout. We next investigated the role of Cdc73 in adult hematopoiesis using Mx1Cre mediated excision. Conditional knockout of Cdc73 in the adult hematopoietic system leads to lethality within 15 days of Cdc73 excision while no phenotype was observed in heterozygous Cdc73fl/wt controls. Pathological examination of bones in these mice showed extensive bone marrow failure. Flow cytometry analysis revealed that cKit+ HSPCs in adult mice are ablated following loss of Cdc73. Bone marrow transplantation assays demonstrated a cell autonomous requirement of Cdc73 for HSC function in vivo. To perform cellular characterization of HSPCs upon Cdc73 KO, we optimized excision conditions to capture cKit+ HSPCs with excised Cdc73 but before their exhaustion. Flow cytometry analysis demonstrated that Cdc73 KO leads to a cell cycle defect. Cdc73 excision leads to a 2.5 fold increase in the accumulation of HSPCs in the G0 phase of cell cycle with a reduction in the proliferative phases. This is accompanied with an increase in cellular death as indicated by Annexin V staining. Together, these data indicate that Cdc73 is required for cell cycle progression and HSPC survival. To understand the molecular function of Cdc73, we performed RNAseq analysis to identify genes regulated by Cdc73 in HSPCs. We observed 390 genes are upregulated and 433 genes are downregulated upon loss of Cdc73. Specifically, Cdc73 excision results in upregulation of cell cycle inhibitor genes such as p21 and p57, consistent with the cell cycle defect observed following Cdc73 excision. Further, when comparing our results to leukemic cells, we uncovered key differences in Cdc73 gene program regulation between ckit+ hematopoietic cells and MLL-AF9 AML cells. Loss of Cdc73 in leukemic cells leads to downregulation of genes associated with early hematopoietic progenitors and upregulation of myeloid differentiation genes consistent with previous studies. Interestingly, we observed a more even distribution of expression changes (non-directional) within these gene programs following Cdc73 inactivation in HSPCs. Most importantly, while loss of Cdc73 in MLL-AF9 AML cells leads to a profound downregulation of the Hoxa9/Meis1 gene program, excision of Cdc73 in HSPCs results in a modest non-directional change in expression of the Hoxa9/Meis1 gene program. This was attributed to no change in Hoxa9 and Meis1 expression in HSPCs following excision of Cdc73, in contrast to MLL-AF9 cells where these pro leukemic targets are significantly downregulated. Together, these data indicate an essential role for the PAF1c subunit Cdc73 in normal hematopoiesis but differential roles and context specific functions in normal and malignant hematopoiesis, which may be of therapeutic value for patients with AMLs expressing Hoxa9/Meis1 gene programs. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Virginia Fonte ◽  
Nancy Weller ◽  
Keith R. Porter

The surfaces of a cell in its topography and anti-genicity expresses subtle variations in the effective genome, as well as the physiology and structural organization of the underlying cytoplasm. Understanding the relationship of these various factors to the surface depends in part on obtaining a detailed characterization of the topography of cells and how this topography changes with phases in the cell cycle, with transformation to malignancy and with the cell's response to such physiologically active agents as cyclic AMP.We have therefore explored the usefulness of the scanning electron microscope in investigations of the cell's topography. Cells grown under favourable in vitro conditions have been fixed in glutaraldehyde, dehydrated in acetone and dried by the critical point method of Anderson.


2019 ◽  
Vol 166 (4) ◽  
pp. 363-373 ◽  
Author(s):  
Hiroshi Hamada ◽  
Yuta Goto ◽  
Jun Arakawa ◽  
Erisa Murayama ◽  
Yui Ogawa ◽  
...  

Abstract The E2F transcription factors (TFs), which control the progression of the cell cycle in response to DNA-damage and various stresses, are known to interact with a tumour suppressor, Retinoblastoma 1 (RB1). We previously showed that the response of the human RB1 promoter to a 12-O-tetradecanoylphorbol-13-acetate (TPA) in HL-60 cells is mediated by a duplicated GGAA motif, which is also present in the 5′-upstream of the E2F family genes. The motifs are especially rich in the 5′-upstream of the E2F4 gene. In the present study, we constructed luciferase (Luc) expression vectors containing a 466 bp of the 5′-upstream of the human E2F4 gene. The transfection of this plasmid and deletion/mutation-introduced derivatives into HL-60 cells and a Luc reporter assay showed that duplicated and triplicated GGAA (TTCC) motifs in the E2F4 promoter respond to TPA. As expected, electrophoretic mobility shift assay indicated that SPI1 (PU.1) binds to the GGAA motif-containing element. A quantitative RT-PCR and western blotting showed that the E2F4 transcripts and its encoding proteins accumulate during the differentiation of HL-60 into macrophage-like cells. In contrast, the expression of the E2F1 gene and the protein, which possibly acts as a cell cycle accelerator, was greatly diminished.


2002 ◽  
Vol 157 (3) ◽  
pp. 357-366 ◽  
Author(s):  
Lisa A. Porter ◽  
Ryan W. Dellinger ◽  
John A. Tynan ◽  
Elizabeth A. Barnes ◽  
Monica Kong ◽  
...  

The decision for a cell to self-replicate requires passage from G1 to S phase of the cell cycle and initiation of another round of DNA replication. This commitment is a critical one that is tightly regulated by many parallel pathways. Significantly, these pathways converge to result in activation of the cyclin-dependent kinase, cdk2. It is, therefore, important to understand all the mechanisms regulating cdk2 to determine the molecular basis of cell progression. Here we report the identification and characterization of a novel cell cycle gene, designated Speedy (Spy1). Spy1 is 40% homologous to the Xenopus cell cycle gene, X-Spy1. Similar to its Xenopus counterpart, human Speedy is able to induce oocyte maturation, suggesting similar biological characteristics. Spy1 mRNA is expressed in several human tissues and immortalized cell lines and is only expressed during the G1/S phase of the cell cycle. Overexpression of Spy1 protein demonstrates that Spy1 is nuclear and results in enhanced cell proliferation. In addition, flow cytometry profiles of these cells demonstrate a reduction in G1 population. Changes in cell cycle regulation can be attributed to the ability of Spy1 to bind to and prematurely activate cdk2 independent of cyclin binding. We demonstrate that Spy1-enhanced cell proliferation is dependent on cdk2 activation. Furthermore, abrogation of Spy1 expression, through the use of siRNA, demonstrates that Spy1 is an essential component of cell proliferation pathways. Hence, human Speedy is a novel cell cycle protein capable of promoting cell proliferation through the premature activation of cdk2 at the G1/S phase transition.


2015 ◽  
Vol 43 (4) ◽  
pp. 2033-2044 ◽  
Author(s):  
Toshimasa Itoh ◽  
Louise Fairall ◽  
Frederick W. Muskett ◽  
Charles P. Milano ◽  
Peter J. Watson ◽  
...  

2003 ◽  
Vol 278 (35) ◽  
pp. 33422-33435 ◽  
Author(s):  
Arun K. Rishi ◽  
Liyue Zhang ◽  
Madanamohan Boyanapalli ◽  
Anil Wali ◽  
Ramzi M. Mohammad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document