scholarly journals ATF2 Interacts with β-Cell-enriched Transcription Factors, MafA, Pdx1, and Beta2, and Activates Insulin Gene Transcription

2011 ◽  
Vol 286 (12) ◽  
pp. 10449-10456 ◽  
Author(s):  
Song-iee Han ◽  
Kunio Yasuda ◽  
Kohsuke Kataoka

Pancreatic β-cell-restricted expression of insulin is established through several critical cis-regulatory elements located in the insulin gene promoter region. The principal cis elements are A-boxes, E1, and C1/RIPE3b. The β-cell-enriched transcription factors Pdx1 and Beta2 bind to the A-boxes and E1 element, respectively. A β-cell-specific trans-acting factor binding to C1/RIPE3b (termed RIPE3b1 activator) was detected by electrophoretic mobility shift assay and has been identified as MafA, a member of the Maf family of basic leucine zipper (bZip) proteins. Here, ATF2, a member of the ATF/CREB family of basic leucine zipper proteins, was identified as a component of the RIPE3b1 activator. ATF2 alone was unable to bind to the C1/RIPE3b element but acquired binding capacity upon complex formation with MafA. ATF2 also interacted with Pdx1 and Beta2, and co-expression of ATF2, MafA, Pdx1, and Beta2 resulted in a synergistic activation of the insulin promoter. Immunohistochemical analysis of mouse pancreas tissue sections showed that ATF2 is enriched in islet endocrine cells, including β-cells. RNAi-mediated knockdown of MafA or ATF2 in the MIN6 β-cell line resulted in a significant decrease in endogenous levels of insulin mRNA. These data indicate that ATF2 is an essential component of the positive regulators of the insulin gene expression.

2002 ◽  
Vol 277 (51) ◽  
pp. 49903-49910 ◽  
Author(s):  
Kohsuke Kataoka ◽  
Song-iee Han ◽  
Setsuko Shioda ◽  
Momoki Hirai ◽  
Makoto Nishizawa ◽  
...  

The insulin gene is specifically expressed in β-cells of the Langerhans islets of the pancreas, and its transcription is regulated by the circulating glucose level. Previous reports have shown that an unidentified β-cell-specific nuclear factor binds to a conservedcis-regulatory element called RIPE3b and is critical for its glucose-regulated expression. Based on the sequence similarity of the RIPE3b element and the consensus binding sequence of the Maf family of basic leucine zipper transcription factors, we here identified mammalianhomologueof avian MafA/L-Maf, an eye-specific member of the Maf family, as the RIPE3b-binding transcriptional activator. Reverse transcription-PCR analysis showed thatmafAmRNA is detected only in the eyes and in pancreatic β-cells and not in α-cells. MafA protein as well as its mRNA is up-regulated by glucose, consistent with the glucose-regulated binding of MafA to the RIPE3b element in β-cell nuclear extracts. In transient luciferase assays, we also showed that expression of MafA greatly enhanced insulin promoter activity and that a dominant-negative form of MafA inhibited it. Therefore, MafA is a β-cell-specific and glucose-regulated transcriptional activator for insulin gene expression and thus may be involved in the function and development of β-cells as well as in the pathogenesis of diabetes.


2006 ◽  
Vol 188 (2) ◽  
pp. 287-294 ◽  
Author(s):  
John Le Lay ◽  
Roland Stein

Islet β cell-specific transcription of the insulin gene is mediated through the binding of the islet-enriched PDX-1, BETA2, and MafA transcription factors to conserved 5′-flanking region regulatory elements. However, additional non-conserved sequences within this region are also significant in regulating expression. Thus, PDX-1 binds to and activates the GG2 element located between nucleotides −145 and −140 of the human gene, while the corresponding, but non-identical, site in the rodent insulin genes are negatively regulated by the Nkx2.2 transcription factor. Here, we show that despite binding PDX-1 approximately 20-fold less effectively than the conserved insulin A3 and A1 sites in gel mobility shift assays, human GG2 appears to be more important for the activation of transfected human insulin enhancer-driven reporter constructs in β cell lines. Furthermore, functional interaction analysis in non-islet cell lines demonstrated that PDX-1 binding to GG2, A1, and A3 contributes to synergistic activation of insulin gene expression with MafA. Our analysis also illustrated the requirement of poorly conserved human sequences between −293 and −251 in mediating activity through the more upstream A3 binding site. Collectively these experiments have revealed distinct features in control of the human and rodent insulin genes by PDX-1, processes that may be involved in regulating insulin expression under both normal and diabetic conditions in humans.


2005 ◽  
Vol 389 (3) ◽  
pp. 813-820 ◽  
Author(s):  
Hilary M. Docherty ◽  
Colin W. Hay ◽  
Laura A. Ferguson ◽  
John Barrow ◽  
Elaine Durward ◽  
...  

The insulin promoter binds a number of tissue-specific and ubiquitous transcription factors. Of these, the homoeodomain protein PDX-1 (pancreatic duodenal homeobox factor-1), the basic leucine zipper protein MafA and the basic helix–loop–helix heterodimer E47/BETA2 (β-cell E box transactivator 2; referred to here as β2) bind to important regulatory sites. Previous studies have shown that PDX-1 can interact synergistically with E47 and β2 to activate the rat insulin 1 promoter. The aim of the present study was to determine the relative contribution of PDX-1, MafA and E47/β2 in regulating the human insulin promoter, and whether these factors could interact synergistically in the context of the human promoter. Mutagenesis of the PDX-1, MafA and E47/β2 binding sites reduced promoter activity by 60, 74 and 94% respectively, in INS-1 β-cells. In the islet glucagonoma cell line αTC1.6, overexpression of PDX-1 and MafA separately increased promoter activity approx. 2.5–3-fold, and in combination approx. 6-fold, indicating that their overall effect was additive. Overexpression of E47 and β2 had no effect. In HeLa cells, PDX-1 stimulated the basal promoter by approx. 40-fold, whereas MafA, E47 and β2 each increased activity by less than 2-fold. There was no indication of any synergistic effects on the human insulin promoter. On the other hand, the rat insulin 1 promoter and a mutated version of the human insulin promoter, in which the relevant regulatory elements were separated by the same distances as in the rat insulin 1 promoter, did exhibit synergy. PDX-1 was shown further to activate the endogenous insulin 1 gene in αTC1.6 cells, whereas MafA activated the insulin 2 gene. In combination, PDX-1 and MafA activated both insulin genes. Chromatin immunoprecipitation assays confirmed that PDX-1 increased the association of acetylated histones H3 and H4 with the insulin 1 gene and MafA increased the association of acetylated histone H3 with the insulin 2 gene.


1991 ◽  
Vol 11 (3) ◽  
pp. 1488-1499 ◽  
Author(s):  
H J Roth ◽  
G C Das ◽  
J Piatigorsky

Expression of the chicken beta B1-crystallin gene was examined. Northern (RNA) blot and primer extension analyses showed that while abundant in the lens, the beta B1 mRNA is absent from the liver, brain, heart, skeletal muscle, and fibroblasts of the chicken embryo, suggesting lens specificity. Promoter fragments ranging from 434 to 126 bp of 5'-flanking sequence (plus 30 bp of exon 1) of the beta B1 gene fused to the bacterial chloramphenicol acetyltransferase gene functioned much more efficiently in transfected embryonic chicken lens epithelial cells than in transfected primary muscle fibroblasts or HeLa cells. Transient expression of recombinant plasmids in cultured lens cells, DNase I footprinting, in vitro transcription in a HeLa cell extract, and gel mobility shift assays were used to identify putative functional promoter elements of the beta B1-crystallin gene. Sequence analysis revealed a number of potential regulatory elements between positions -126 and -53 of the beta B1 promoter, including two Sp1 sites, two octamer binding sequence-like sites (OL-1 and OL-2), and two polyomavirus enhancer-like sites (PL-1 and PL-2). Deletion and site-specific mutation experiments established the functional importance of PL-1 (-116 to -102), PL-2 (-90 to -76), and OL-2 (-75 to -68). DNase I footprinting using a lens or a HeLa cell nuclear extract and gel mobility shifts using a lens nuclear extract indicated the presence of putative lens transcription factors binding to these DNA sequences. Competition experiments provided evidence that PL-1 and PL-2 recognize the same or very similar factors, while OL-2 recognizes a different factor. Our data suggest that the same or closely related transcription factors found in many tissues are used for expression of the chicken beta B1-crystallin gene in the lens.


2019 ◽  
Vol 63 (4) ◽  
pp. 297-308
Author(s):  
Suzuka Onishi ◽  
Kohsuke Kataoka

Insulin plays a central role in glucose homeostasis and is produced exclusively by pancreatic islet β-cells. Insulin gene transcription is regulated by a set of β-cell-enriched transcription factors that bind to cis-regulatory elements within the promoter region, and regulation of the insulin gene promoter is closely linked to β-cell functionality. PIASy, a member of the PIAS family of SUMO E3 ligases, is thought to affect insulin gene transcription, but its mechanism of action is not fully understood. Here, we demonstrate that PIASy interacts with MafA and represses insulin gene promoter activity. MafA is a β-cell-restricted basic leucine-zipper transcriptional activator that binds to the C1 element of the insulin gene promoter. In line with previous studies showing the transactivator domain of MafA is SUMOylated, PIASy enhanced the SUMOylation of MafA. However, a SUMOylation-deficient mutant of MafA was still repressed by PIASy, indicating that this modification is dispensable for repression. Using a series of MafA and PIASy mutants, we found that the basic domain of MafA and the amino-terminal region of PIASy containing the SAP domain are necessary for their interaction. In addition, SUMO-interacting motif 1 (SIM1) at the carboxyl-terminal region of PIASy was required to repress the synergistic transactivation of MafA, Pdx1, and Beta2, transcription factors playing central roles in β-cell differentiation and function. The PINIT and SP-RING domains in the middle region of PIASy were dispensable. These findings suggest that PIASy binds to MafA through the SAP domain and negatively regulates the insulin gene promoter through a novel SIM1-dependent mechanism.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2149
Author(s):  
Nkulu Kabange Rolly ◽  
Byung-Wook Yun

Nitrogen (N) is an essential macronutrient, which contributes substantially to the growth and development of plants. In the soil, nitrate (NO3) is the predominant form of N available to the plant and its acquisition by the plant involves several NO3 transporters; however, the mechanism underlying their involvement in the adaptive response under abiotic stress is poorly understood. Initially, we performed an in silico analysis to identify potential binding sites for the basic leucine zipper 62 transcription factor (AtbZIP62 TF) in the promoter of the target genes, and constructed their protein–protein interaction networks. Rather than AtbZIP62, results revealed the presence of cis-regulatory elements specific to two other bZIP TFs, AtbZIP18 and 69. A recent report showed that AtbZIP62 TF negatively regulated AtbZIP18 and AtbZIP69. Therefore, we investigated the transcriptional regulation of AtNPF6.2/NRT1.4 (low-affinity NO3 transporter), AtNPF6.3/NRT1.1 (dual-affinity NO3 transporter), AtNRT2.1 and AtNRT2.2 (high-affinity NO3 transporters), and AtGLU1 and AtGLU2 (both encoding glutamate synthase) in response to drought stress in Col-0. From the perspective of exploring the transcriptional interplay of the target genes with AtbZIP62 TF, we measured their expression by qPCR in the atbzip62 (lacking the AtbZIP62 gene) under the same conditions. Our recent study revealed that AtbZIP62 TF positively regulates the expression of AtPYD1 (Pyrimidine 1, a key gene of the de novo pyrimidine biosynthesis pathway know to share a common substrate with the N metabolic pathway). For this reason, we included the atpyd1-2 mutant in the study. Our findings revealed that the expression of AtNPF6.2/NRT1.4, AtNPF6.3/NRT1.1 and AtNRT2.2 was similarly regulated in atzbip62 and atpyd1-2 but differentially regulated between the mutant lines and Col-0. Meanwhile, the expression pattern of AtNRT2.1 in atbzip62 was similar to that observed in Col-0 but was suppressed in atpyd1-2. The breakthrough is that AtNRT2.2 had the highest expression level in Col-0, while being suppressed in atbzip62 and atpyd1-2. Furthermore, the transcript accumulation of AtGLU1 and AtGLU2 showed differential regulation patterns between Col-0 and atbzip62, and atpyd1-2. Therefore, results suggest that of all tested NO3 transporters, AtNRT2.2 is thought to play a preponderant role in contributing to NO3 transport events under the regulatory influence of AtbZIP62 TF in response to drought stress.


2020 ◽  
Vol 8 (7) ◽  
pp. 1045
Author(s):  
Yuping Xu ◽  
Yongchun Wang ◽  
Huizhang Zhao ◽  
Mingde Wu ◽  
Jing Zhang ◽  
...  

The basic leucine zipper (bZIP) proteins family is one of the largest and most diverse transcription factors, widely distributed in eukaryotes. However, no information is available regarding the bZIP gene family in Coniothyrium minitans, an important biocontrol agent of the plant pathogen Sclerotinia sclerotiorum. In this study, we identified 34 bZIP genes from the C. minitans genome, which were classified into 8 groups based on their phylogenetic relationships. Intron analysis showed that 28 CmbZIP genes harbored a variable number of introns, and 15 of them shared a feature that intron inserted into the bZIP domain. The intron position in bZIP domain was highly conserved, which was related to recognize the arginine (R) and could be treated as a genomic imprinting. Expression analysis of the CmbZIP genes in response to abiotic stresses indicated that they might play distinct roles in abiotic stress responses. Results showed that 22 CmbZIP genes were upregulated during the later stage of conidial development. Furthermore, transcriptome analysis indicated that CmbZIP genes are involved in different stages of mycoparasitism. Among deletion mutants of four CmbZIPs (CmbZIP07, -09, -13, and -16), only ΔCmbZIP16 mutants significantly reduced its tolerance to the oxidative stress. The other mutants exhibited no significant effects on colony morphology, mycelial growth, conidiation, and mycoparasitism. Taken together, our results suggested that CmbZIP genes play important roles in the abiotic stress responses, conidial development, and mycoparasitism. These results provide comprehensive information of the CmbZIP gene family and lay the foundation for further research on the bZIP gene family regarding their biological functions and evolutionary history.


Sign in / Sign up

Export Citation Format

Share Document