scholarly journals 3,3′,5-Triiodo-l-thyronine Up-regulation of Na,K-ATPase Activity and Cell Surface Expression in Alveolar Epithelial Cells Is Src Kinase- and Phosphoinositide 3-Kinase-dependent

2004 ◽  
Vol 279 (46) ◽  
pp. 47589-47600 ◽  
Author(s):  
Jianxun Lei ◽  
Cary N. Mariash ◽  
David H. Ingbar
2002 ◽  
Vol 277 (49) ◽  
pp. 47318-47324 ◽  
Author(s):  
Carole Planès ◽  
Marcel Blot-Chabaud ◽  
Michael A. Matthay ◽  
Sylviane Couette ◽  
Tokujiro Uchida ◽  
...  

2007 ◽  
Vol 292 (1) ◽  
pp. L6-L14 ◽  
Author(s):  
Jianxun Lei ◽  
Christine H. Wendt ◽  
Daosheng Fan ◽  
Cary N. Mariash ◽  
David H. Ingbar

Late in gestation, the developing air space epithelium switches from chloride and fluid secretion to sodium and fluid absorption. Absorption requires Na-K-ATPase acting in combination with apical sodium entry mechanisms. Hypothyroidism inhibits perinatal fluid resorption, and thyroid hormone [triiodothyronine (T3)] stimulates adult alveolar epithelial cell (AEC) Na-K-ATPase. This study explored the developmental regulation of Na-K-ATPase by T3 in fetal rat distal lung epithelial (FDLE) cells. T3 increased Na-K-ATPase activity in primary FDLE cells from gestational day 19 [both primary FDLE cells at embryonic day 19 (E19) and the cell line FD19 derived from FDLE cells at E19]. However, T3 did not increase the Na-K-ATPase activity in less mature FDLE cells, including primary E17 and E18 FDLE cells and the cell line FD18 (derived from FDLE cells at E18). Subsequent experiments assessed the T3 signal pathway to define whether it was similar in the late FDLE and adult AEC and to determine the site of the switch in responsiveness to T3. As in adult AEC, in the FD19 cell line, the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin blocked the T3-induced increase in Na-K-ATPase activity and plasma membrane quantity. T3 caused a parallel increase in phosphorylation of Akt at Ser473 in FDLE cells from E19, but not from E17 or E18. In the FD18 cell line, transient expression of a constitutively active mutant of the PI3K catalytic p110 subunit significantly augmented the Na-K-ATPase activity and the cell surface expression of Na-K-ATPase α1 protein. In conclusion, FDLE cells from E17 and E18 lacked T3-sensitive Na-K-ATPase activity but acquired this response at E19. The developmental stimulation of Na-K-ATPase by T3 in rat FDLE cells requires activation of PI3K, and the acquisition of T3 responsiveness may be at PI3K or upstream in the signaling pathway.


2003 ◽  
Vol 285 (3) ◽  
pp. L762-L772 ◽  
Author(s):  
Jianxun Lei ◽  
Sogol Nowbar ◽  
Cary N. Mariash ◽  
David H. Ingbar

Na-K-ATPase protein is critical for maintaining cellular ion gradients and volume and for transepithelial ion transport in kidney and lung. Thyroid hormone, 3,3′,5-triiodo-l-thyronine (T3), given for 2 days to adult rats, increases alveolar fluid resorption by 65%, but the mechanism is undefined. We tested the hypothesis that T3 stimulates Na-K-ATPase in adult rat alveolar epithelial cells (AEC), including primary rat alveolar type II (ATII) cells, and determined mechanisms of the T3 effect on the Na-KATPase enzyme using two adult rat AEC cell lines (MP48 and RLE-6TN). T3 at 10-8 and 10-5 M increased significantly hydrolytic activity of Na-K-ATPase in primary ATII cells and both AEC cell lines. The increased activity was dose dependent in the cell lines (10-9-10-4 M) and was detected within 30 min and peaked at 6 h. Maximal increases in Na-K-ATPase activity were twofold in MP48 and RLE-6TN cells at pharmacological T3 of 10-5 and 10-4 M, respectively, but increases were statistically significant at physiological T3 as low as 10-9 M. This effect was T3 specific, because reverse T3 (3,3′,5′-triiodo-l-thyronine) at 10-9-10-4 M had no effect. The T3-induced increase in Na-K-ATPase hydrolytic activity was not blocked by actinomycin D. No significant change in mRNA and total cell protein levels of Na-K-ATPase were detected with 10-9-10-5 M T3 at 6 h. However, T3 increased cell surface expression of Na-K-ATPase α1- or β1-subunit proteins by 1.7- and 2-fold, respectively, and increases in Na-K-ATPase activity and cell surface expression were abolished by brefeldin A. These data indicate that T3 specifically stimulates Na-K-ATPase activity in adult rat AEC. The upregulation involves translocation of Na-K-ATPase to plasma membrane, not increased gene transcription. These results suggest a novel nontranscriptional mechanism for regulation of Na-K-ATPase by thyroid hormone.


2003 ◽  
Vol 14 (7) ◽  
pp. 2677-2688 ◽  
Author(s):  
Manlio Vinciguerra ◽  
Georges Deschênes ◽  
Udo Hasler ◽  
David Mordasini ◽  
Martine Rousselot ◽  
...  

In the mammalian kidney the fine control of Na+ reabsorption takes place in collecting duct principal cells where basolateral Na,K-ATPase provides the driving force for vectorial Na+ transport. In the cortical collecting duct (CCD), a rise in intracellular Na+ concentration ([Na+]i) was shown to increase Na,K-ATPase activity and the number of ouabain binding sites, but the mechanism responsible for this event has not yet been elucidated. A rise in [Na+]i caused by incubation with the Na+ ionophore nystatin, increased Na,K-ATPase activity and cell surface expression to the same extent in isolated rat CCD. In cultured mouse mpkCCDcl4 collecting duct cells, increasing [Na+]i either by cell membrane permeabilization with amphotericin B or nystatin, or by incubating cells in a K+-free medium, also increased Na,K-ATPase cell surface expression. The [Na+]i-dependent increase in Na,K-ATPase cell-surface expression was prevented by PKA inhibitors H89 and PKI. Moreover, the effects of [Na+]i and cAMP were not additive. However, [Na+]i-dependent activation of PKA was not associated with an increase in cellular cAMP but was prevented by inhibiting the proteasome. These findings suggest that Na,K-ATPase may be recruited to the cell membrane following an increase in [Na+]i through cAMP-independent PKA activation that is itself dependent on proteasomal activity.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3088-3088 ◽  
Author(s):  
Kim E. Olson ◽  
Dianne Pulte ◽  
Marinus Johan Broekman ◽  
Ashley E. Olson ◽  
Joan Drosopoulos ◽  
...  

Abstract Blood-borne cellular elements expressing ectonucleotidase activity have been shown to regulate platelet activation and recruitment in response to agonists. In particular, exposure of a platelet releasate to isolated neutrophils (PMN) results in loss of its platelet activating activity in a subsequent assay (Valles et al, J Clin Invest1993, 92:1357–1365). Whereas expression of CD39 on vascular endothelial cells has been well characterized, expression on leukocytes has been less well studied. Freshly prepared lymphocyte and PMN cell populations were evaluated for both cell surface expression of CD39 and ectonucleotidase activity. FACS analysis showed that 98% of PMN were positive for CD39 compared to only 20% of lymphocytes. In addition, neutrophils stained more intensely, indicating the presence of a higher quantity of cell surface-expressed CD39. Interestingly, neutrophils exhibited only 1/3 of the ATPase and 1/2 of the ADPase activities of the same number of lymphocytes, although the latter are thought to have greater antithrombotic capacity. RT-PCR products from total RNA isolated from lymphocytes and PMN were sequenced. This revealed alternately spliced CD39 mRNA species present in PMN at levels equal to that of CD39 mRNA. In contrast, lymphocytes, which showed much higher levels of CD39 mRNA, expressed these variants at much lower levels. RACE analyses of cDNAs generated from total RNA demonstrated two CD39 gene-derived mRNAs. Each was comprised of an alternate 3′ segment lacking the C-terminal transmembrane domain, and distinguished by an internal deletion. Myc- and Flag-tagged constructs expressed in COS cells resulted in cell surface expression of the respectively tagged variants (immunocytochemistry, western blot analyses of plasma membrane preparations). Membrane preparations assayed for enzyme activity revealed no apyrase activity for either molecule expressed alone or together. Co-transfection of CD39 with equal amounts of either construct singly or in combination resulted in a 30-50% decrease in ATPase activity compared to CD39 alone. Similarly, CD39 co-expressed with either construct alone lost 75–90% of its ADPase activity. Unexpectedly, co-transfection of CD39 with both variants together resulted in a 20–40% increase in ADPase activity. Glutaraldehyde cross-linking of membrane preparations from triply transfected COS cells followed by immunoprecipitation and western blot analyses demonstrated the presence of all three species in higher order complexes. Thus, both variants can simultaneously associate with CD39, generating hetero-multimers with altered substrate preference and catalytic efficiency compared to CD39 tetramers. These observations add to our understanding of the regulation of ectonucleotidase activity at the cell surface. The balanced expression of CD39 and its two identified variants may underlie the anti-platelet activity of neutrophils previously reported. The finding that association of CD39 with either construct alone results in near complete loss of ADPase activity with only partial diminution of ATPase activity suggests a possible etiology for a pro-thrombotic phenotype.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2564-2564 ◽  
Author(s):  
Elodie Lainey ◽  
Marie Sebert ◽  
Cyrielle Bouteloup ◽  
Carole Leroy ◽  
Sylvain Thepot ◽  
...  

Abstract Abstract 2564 Background: Erlotinib (Erlo) was originally developed as an epidermal growth factor receptor inhibitor, yet it also exerts antileukemic “off-target” effects, in vitro and in vivo in MDS and AML (Boehrer et al., Blood, 2008). In a preliminary pre-clinical study, we observed that Erlo increased chemosensitivity to current AML drugs in different AML cell lines and in ex vivo AML patient cells (n=3) (ASH 2010, 2163). Those first results suggested an implication of ABC-transporters in the potentiation of apoptosis. Here, we bring direct evidence for Erlo's ability to hinder efflux pumps and to decrease their expression on AML cells. Methods: Drug efflux via ABC-transporters (substrate: mitoxantrone-MTZ or doxorubicin-Dox), and specific efflux via P-gp (substrates: DioC23 and Rho-123), MRP (s: Calcein and CDCFDA) and BCRP (s: Hoechst 33342) were quantified by FACS following incubation with 10mM Erlo. Intracellular VP-16) content was quantified by Rapid Resolution Liquid Chromatography (RRLC). Biochemical inhibitors of the respective ABC-transporters (CSA (1μM), verapamil (Vera-10μM), MK571 (10μM), KO143 (500nM) served as positive controls. To assess chemosensitivity, 10mM Erlo was combined to AraC (100nM), Dox (100nM), or VP-16 (1mM) and apoptosis over-time (24, 48, 72h) quantified by DioC3(6)/PI staining. Assessment of sensitivity to the drug combinations listed above were carried out in KG-1 cells, and its more immature variant KG-1a and in ex vivo CD34+ marrow cells from AML patients (AML post MDS n=5, de novo AML n=5). P-gp's ATPase activity was quantified with the luminescence-based Pgp-Gloä Assay System. Surface expression of P-gp was determined by FACS analysis and total protein expression of MRP, BCRP and P-gp by immunoblot analysis. Functional relevance of signaling pathways was tested using the SRC inhibitor PP2 (10μM) and the mTOR inhibitor Rapamicin (10nM). Results: We found that I) Erlo inhibited efflux via P-gp, MRP and BCRP as demonstrated by increased intracellular retention of DioC23/Rho-123, Calcein/CDCFDA and Hoechst 33342, respectively, andby its ability to retain MTX (300nM) and Dox (200nM) intracellularly II) Inhibition of drug efflux was higher in KG-1 than in KG-1a cellss, in agreement with a lower expression of P-gp and BCRP on KG-1a as compared to KG-1 cells; III) Quantification of VP-16 by RRLC after incubation with or without Erlo showed the ability of Erlo to increase intracellular VP-16 contents by approximately 60%; IV) Erlo increased ATPase activity in a dose-dependant manner, supporting the notion that Erlo is a competitive inhibitor of P-gp; IV) Erlo combined to VP-16 induced synergistic effects on apoptosis in KG-1 cells, and to a lesser extent in KG-1a (48h KG-1: Erlo 20%, VP-16 38%, Erlo+VP16 78%, KG-1a 48h: Erlo 10%, VP-16: 12%, Erlo+VP16: 35%); V) 48h of incubation with Erlo reduced cell surface expression of P-gp in KG-1 cells by 50%, whereas total P-gp protein expression remained unchanged, suggesting that Erlo interferes exclusively with the protein form expressed on the cell surface, VI) Decrease of P-gp cell surface expression was recapitulated upon incubation with PP2 (10μM) or Rapamicin (10nM); VII) the combination of Erlo+VP-16 in 10 AML-patient samples induced synergistic effects on apoptosis in 5 of them and additive effects in 3 of them. Conclusions: We here confirm that Erlo increases sensitivity towards chemotherapeutic agents subjected to drug efflux via ABC-transporters and delineate the molecular pathways conveying these effects. Disclosures: Fenaux: Celgene: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document