scholarly journals Bioenergetics in Glutaryl-Coenzyme A Dehydrogenase Deficiency

2005 ◽  
Vol 280 (23) ◽  
pp. 21830-21836 ◽  
Author(s):  
Sven W. Sauer ◽  
Jürgen G. Okun ◽  
Marina A. Schwab ◽  
Linda R. Crnic ◽  
Georg F. Hoffmann ◽  
...  

Inherited deficiency of glutaryl-CoA dehydrogenase results in an accumulation of glutaryl-CoA, glutaric, and 3-hydroxyglutaric acids. If untreated, most patients suffer an acute encephalopathic crisis and, subsequently, acute striatal damage being precipitated by febrile infectious diseases during a vulnerable period of brain development (age 3 and 36 months). It has been suggested before that some of these organic acids may induce excitotoxic cell damage, however, the relevance of bioenergetic impairment is not yet understood. The major aim of our study was to investigate respiratory chain, tricarboxylic acid cycle, and fatty acid oxidation in this disease using purified single enzymes and tissue homogenates from Gcdh-deficient and wild-type mice. In purified enzymes, glutaryl-CoA but not glutaric or 3-hydroxyglutaric induced an uncompetitive inhibition of α-ketoglutarate dehydrogenase complex activity. Notably, reduced activity of α-ketoglutarate dehydrogenase activity has recently been demonstrated in other neurodegenerative diseases, such as Alzheimer, Parkinson, and Huntington diseases. In contrast to α-ketoglutarate dehydrogenase complex, no direct inhibition of glutaryl-CoA, glutaric acid, and 3-hydroxyglutaric acid was found in other enzymes tested. In Gcdh-deficient mice, respiratory chain and tricarboxylic acid activities remained widely unaffected, virtually excluding regulatory changes in these enzymes. However, hepatic activity of very long-chain acyl-CoA dehydrogenase was decreased and concentrations of long-chain acylcarnitines increased in the bile of these mice, which suggested disturbed oxidation of long-chain fatty acids. In conclusion, our results demonstrate that bioenergetic impairment may play an important role in the pathomechanisms underlying neurodegenerative changes in glutaryl-CoA dehydrogenase deficiency.

2020 ◽  
Vol 33 (3) ◽  
Author(s):  
Hikari A.I. Yoshihara ◽  
Jessica A.M. Bastiaansen ◽  
Magnus Karlsson ◽  
Mathilde H. Lerche ◽  
Arnaud Comment ◽  
...  

2009 ◽  
Vol 2009 ◽  
pp. 1-3 ◽  
Author(s):  
Marcello Marcì ◽  
Patrizia Ajovalasit

We report about an infant affected by dilated cardiomyopathy (CMP) in whom metabolic investigations evidenced medium-chain-acyl-CoA dehydrogenase deficiency (MCADD), that is one of three types of inherited disorders of mitochondrial fatty-acid -oxidation. Long-chain and very long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficits are recognized as responsible of hypertrophic or, less frequently, dilated cardiomyopathy (CMP) in childhood. Otherwise, to our knowledge, no case of MCADD associated to dilated CMP has been reported in literature.


PEDIATRICS ◽  
1991 ◽  
Vol 87 (3) ◽  
pp. 328-333 ◽  
Author(s):  
William R. Treem ◽  
Jeffrey S. Hyams ◽  
Charles A. Stanley ◽  
Daniel E. Hale ◽  
Harris B. Leopold

Inherited defects in fatty acid oxidation, which have been described and diagnosed with increasing frequency in the last decade, are most commonly attributed to a deficiency in the activity of medium-chain acyl-CoA dehydrogenase. Few cases of the related enzyme defect of long-chain acyl-CoA dehydrogenase activity have been reported. An infant with documented long-chain acyl-CoA dehydrogenase deficiency is described with a detailed metabolic profile, long-term clinical follow-up, and response to treatment. This patient is compared with the seven previously published cases of this disorder in order to stress the unique features of the initial presentation, more subtle late manifestations of the disease, and clinical and biochemical differentiation from the more common medium-chain acyl-CoA dehydrogenase deficiency. This report stresses the enlarging spectrum of the clinical presentation and natural history of this defect in fatty acid oxidation.


1990 ◽  
Vol 68 (10) ◽  
pp. 1210-1217 ◽  
Author(s):  
Bhagu R. Bhavnani ◽  
Duncan G. Wallace

The metabolic pathways by which the glycogen is utilized by fetal tissues is not well established. In the present study the ontogeny of seven key enzymes involved in glycolysis and the tricarboxylic acid cycle has been established for rabbit fetal lung, heart, and liver. In the fetal lung the activities of phosphofructokinase, pyruvate kinase, lactic dehydrogenase, citrate synthase, and malate dehydrogenase increase from day 21 to 25. Thereafter the levels either drop to day 19 levels or do not change. The isocitrate dehydrogenase activity continues to increase from day 19 of gestation to maximum level on day 31 of gestation. In fetal heart the pattern of activity is similar, but in fetal liver most of the enzymes reach maximum levels earlier and, with the exception of pyruvate kinase, do not show a significant fall in activity near term. The pattern of development of pyruvate dehydrogenase complex is different; maximum activity is observed on day 27 in fetal lung and heart and on day 21 in fetal liver. These results indicate that all three fetal tissues can oxidize glucose. Also, the accumulation of glycogen, particularly in fetal lung, appears to ensure that at specific times during gestation adequate quantities of energy (ATP) and substrates, required for surfactant phospholipid synthesis, are available independent of maternal supply of glucose or during brief episodes of hypoxia.Key words: glycogen, glycolysis, tricarboxylic acid cycle, pyruvate dehydrogenase, surfactant.


2019 ◽  
Vol 38 (7) ◽  
pp. 785-793 ◽  
Author(s):  
T Radhiga ◽  
S Senthil ◽  
A Sundaresan ◽  
KV Pugalendi

In the present study, the modulatory effect of ursolic acid (UA) on cardiac fibrosis and mitochondrial and lysosomal enzymes activity in isoproterenol-induced myocardial infarction (MI) in rats were examined. Isoproterenol hydrochloride (ISO; 85 mg/kg body weight) was administered subcutaneously for first two consecutive days. ISO-induced MI in rats significantly decreased the activities of mitochondrial tricarboxylic acid cycle enzymes and respiratory chain enzymes while increased the activities of lysosomal glycohydrolases and cathepsins. The expression of matrix metalloproteinase 2 (MMP-2), MMP-9, collagen type I, α-smooth muscle actin (α-SMA), and transforming growth factor-β (TGF-β) were upregulated in ISO-induced MI in rats. UA administration to rats showed increased activities of mitochondrial tricarboxylic acid cycle enzymes and respiratory chain enzymes and decreased activities of lysosomal glycohydrolases and cathepsins in ISO-induced rats. Furthermore, expression of MMP-2, MMP-9, collagen type I, α-SMA, and TGF-β downregulated in UA-administered rats. Thus, our results demonstrate that UA has an anti-fibrotic effect and attenuates the mitochondrial and lysosomal dysfunction in ISO-induced MI in rats.


2016 ◽  
Vol 68 (Suppl. 3) ◽  
pp. 21-23
Author(s):  
Susan Winter ◽  
Neil R.M. Buist ◽  
Nicola Longo ◽  
Saro H. Armenian ◽  
Gary Lopaschuk ◽  
...  

The 1st International Carnitine Working Group concluded with a round table discussion addressing several areas of relevance. These included the design of future studies that could increase the amount of evidence-based data about the role of carnitine in the treatment of fatty acid oxidation defects, for which substantial controversy still exists. There was general consensus that future trials on the effect of carnitine in disorders of fatty acid oxidation should be randomized, double-blinded, multicentered and minimally include the following diagnoses: medium-chain acyl coenzyme A (CoA) dehydrogenase deficiency, very long-chain acyl-CoA dehydrogenase deficiency, long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and mitochondrial trifunctional protein deficiency. Another area that generated interest was trials of carnitine in cardiomyopathy and, especially, the use of biomarkers to identify patients at greater risk of cardiotoxicity following treatment with anthracyclines. The possibility that carnitine treatment may lead to improvements in autistic behaviors was also discussed, although the evidence is still not sufficient to make any firm conclusions in this regard. Preliminary data on carnitine levels in children and adolescents with primary hypertension, low birth weight and nephrotic syndrome was also presented. Lastly, the panelists stressed that there remains an objective need to harmonize the terminology used to describe carnitine deficiencies (e.g., primary, secondary and systemic deficiency).


Sign in / Sign up

Export Citation Format

Share Document