scholarly journals The Peroxisomal Acyl-CoA Thioesterase Pte1p fromSaccharomyces cerevisiaeIs Required for Efficient Degradation of Short Straight Chain and Branched Chain Fatty Acids

2006 ◽  
Vol 281 (17) ◽  
pp. 11729-11735 ◽  
Author(s):  
Isamu Maeda ◽  
Syndie Delessert ◽  
Seiko Hasegawa ◽  
Yoshiaki Seto ◽  
Sophie Zuber ◽  
...  
1980 ◽  
Vol 26 (8) ◽  
pp. 893-898 ◽  
Author(s):  
Toshi Kaneda ◽  
E. J. Smith

Fatty acid compositions of lipids from six bacteria and four yeasts were determined. Fatty acid de novo synthetases were investigated with respect to chain length specificity towards acyl-CoA primers of various chain lengths.Four species of bacteria (Bacillus subtilis, Corynebacterium cyclohexanicum, Micrococcus luteus, and Pseudomonas maltophilia) possess branched-chain fatty acids of the iso and anteiso series as the major acids. De novo synthetases from these organisms exhibited specificity towards the chain length of the primer in the order butyrl-CoA > propionyl-CoA [Formula: see text] acetyl-CoA. The remainder, two bacteria and all four yeasts, have the straight-chain type of fatty acids only and fall into two groups: (1) Eschericia coli B, Pseudomonas fluorescens, and Saccharomyces cerevisiae, which utilize the primers in the order acetyl-CoA > propionyl-CoA [Formula: see text] butyryl-CoA; and (2) Candida sake, Candida tropicalis, and Rhodolorula glutinis, which show the order propionyl-CoA > acetyl-CoA [Formula: see text] butyryl-CoA.L-α-Keto-β-methylvalerate, a precursor of the branched-chain primers, can be used as a source of primer for fatty acid synthesis by the organisms with branched-chain acids but not by those with the straight-chain type.The results indicate that organisms having straight-chain fatty acids lack the branched-chain equivalents for two reasons: first, their enzymes are not active toward primers with more than three carbons, and second, they lack a system of supplying suitable branched-chain primers.It appears that activities of de novo synthetases from the organisms having straight-chain fatty acids generally have much higher activities than those from the organisms possessing branched-chain fatty acids.


1983 ◽  
Vol 29 (12) ◽  
pp. 1634-1641 ◽  
Author(s):  
Toshi Kaneda ◽  
Eleanor J. Smith ◽  
Devarray N. Naik

The fatty acid compositions of three psychrophilic species of Bacillus were determined by gas–liquid chromatography. The proportions of straight-chain fatty acids, branched-chain fatty acids, and unsaturated fatty acids were found to be 13.3, 86.7, and 26.1 % of the total cellular fatty acids for Bacillus globispores, 36.6, 63.4, and 25.1 % for Bacillus insolitus, and 6.9, 93.1, and 18.4% for Bacillus psychrophilus, respectively. In all three organisms the de novo fatty acid synthetase specificity towards acyl-CoA primers was butyryl-CoA > propionyl-CoA [Formula: see text] acetyl-CoA. This shows that B. insolitus, which has an unusually large proportion of straight-chain fatty acids for Bacillus, does not possess a different de novo fatty acid synthetase than the other two organisms. Therefore, the greater proportion of straight-chain fatty acids in B. insolitus may be explained by a large supply of straight-chain primer.


1981 ◽  
Vol 196 (2) ◽  
pp. 611-618 ◽  
Author(s):  
A M Massart-Leën ◽  
D L Massart

The aim of this paper is 2-fold. (1) To propose the use of a group of mathematical techniques, called clustering, in the elucidation of complex metabolic relationships. (2) To apply clustering for the identification of related groups of saturated fatty acids having a common metabolic pathway for their biosynthesis in the milk fat of lactating goats. In this way, four groups of branched-chain fatty acids and two groups of straight-chain fatty acids are identified; the odd-numbered iso-, the even-numbered iso-, the anteiso-acids and the branched-chain fatty acids with methyl substitution in the chain, the odd-numbered straight-chain and the even-numbered straight-chain fatty acids. The long-chain fatty acids are not part of any group. The different metabolic pathways for their biosynthesis are discussed. From the results, it is concluded that clustering is indeed a potentially useful tool in the study of complex metabolic relationships.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 214
Author(s):  
Kiran B. Tiwari ◽  
Craig Gatto ◽  
Brian J. Wilkinson

Staphylococcus aureus demonstrates considerable membrane lipid plasticity in response to different growth environments, which is of potential relevance to response and resistance to various antimicrobial agents. This information is not available for various species of coagulase-negative staphylococci, which are common skin inhabitants, can be significant human pathogens, and are resistant to multiple antibiotics. We determined the total fatty acid compositions of Staphylococcus auricularis, Staphylococcus capitis, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus saprophyticus, and Staphylococcus aureus for comparison purposes. Different proportions of branched-chain and straight-chain fatty acids were observed amongst the different species. However, growth in cation-supplemented Mueller–Hinton broth significantly increased the proportion of branched-chain fatty acids, and membrane fluidities as measured by fluorescence anisotropy. Cation-supplemented Mueller–Hinton broth is used for routine determination of antimicrobial susceptibilities. Growth in serum led to significant increases in straight-chain unsaturated fatty acids in the total fatty acid profiles, and decreases in branched-chain fatty acids. This indicates preformed fatty acids can replace biosynthesized fatty acids in the glycerolipids of coagulase-negative staphylococci, and indicates that bacterial fatty acid biosynthesis system II may not be a good target for antimicrobial agents in these organisms. Even though the different species are expected to be exposed to skin antimicrobial fatty acids, they were susceptible to the major skin antimicrobial fatty acid sapienic acid (C16:1Δ6). Certain species were not susceptible to linoleic acid (C18:2Δ9,12), but no obvious relationship to fatty acid composition could be discerned.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1808
Author(s):  
Iris Trefflich ◽  
Stefan Dietrich ◽  
Annett Braune ◽  
Klaus Abraham ◽  
Cornelia Weikert

A vegan diet could impact microbiota composition and bacterial metabolites like short-chain (SCFA) and branched-chain fatty acids (BCFA). The aim of this study was to compare the concentrations of SCFA, BCFA, ammonia, and fecal pH between vegans and omnivores. In this cross-sectional study (vegans n = 36; omnivores n = 36), microbiota composition, fecal SCFA, BCFA, and ammonia concentrations and pH were analyzed in complete stool samples. A random forest regression (RFR) was used to identify bacteria predicting SCFA/BCFA concentrations in vegans and omnivores. No significant differences in SCFA and BCFA concentrations were observed between vegans and omnivores. Fecal pH (p = 0.005) and ammonia concentration (p = 0.01) were significantly lower in vegans than in omnivores, while fiber intake was higher (p < 0.0001). Shannon diversity was higher in omnivores compared to vegans on species level (p = 0.04) only. In vegans, a cluster of Faecalibacterium prausnitzii, Prevotella copri, Dialister spp., and Eubacterium spp. was predictive for SCFA and BCFA concentrations. In omnivores, Bacteroides spp., Clostridium spp., Ruminococcus spp., and Prevotella copri were predictive. Though SCFA and BCFA did not differ between vegans and omnivores, the results of the RFR suggest that bacterial functionality may be adapted to varying nutrient availability in these diets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Shi ◽  
Di Zhao ◽  
Fan Zhao ◽  
Chong Wang ◽  
Galia Zamaratskaia ◽  
...  

AbstractThis study was aimed to evaluate the differences in the composition of gut microbiota, tryptophan metabolites and short-chain fatty acids in feces between volunteers who frequently ate chicken and who frequently ate pork. Twenty male chicken-eaters and 20 male pork-eaters of 18 and 30 years old were recruited to collect feces samples for analyses of gut microbiota composition, short-chain fatty acids and tryptophan metabolites. Chicken-eaters had more diverse gut microbiota and higher abundance of Prevotella 9, Dialister, Faecalibacterium, Megamonas, and Prevotella 2. However, pork-eaters had higher relative abundance of Bacteroides, Faecalibacterium, Roseburia, Dialister, and Ruminococcus 2. In addition, chicken-eaters had high contents of skatole and indole in feces than pork-eaters, as well as higher contents of total short chain fatty acids, in particular for acetic acid, propionic acid, and branched chain fatty acids. The Spearman’s correlation analysis revealed that the abundance of Prevotella 2 and Prevotella 9 was positively correlated with levels of fecal skatole, indole and short-chain fatty acids. Thus, intake of chicken diet may increase the risk of skatole- and indole-induced diseases by altering gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document