scholarly journals Old Yellow Enzymes, Highly Homologous FMN Oxidoreductases with Modulating Roles in Oxidative Stress and Programmed Cell Death in Yeast

2007 ◽  
Vol 282 (49) ◽  
pp. 36010-36023 ◽  
Author(s):  
Osama Odat ◽  
Samer Matta ◽  
Hadi Khalil ◽  
Sotirios C. Kampranis ◽  
Raymond Pfau ◽  
...  

In a genetic screen to identify modifiers of Bax-dependent lethality in yeast, the C terminus of OYE2 was isolated based on its capacity to restore sensitivity to a Bax-resistant yeast mutant strain. Overexpression of full-length OYE2 suppresses Bax lethality in yeast, lowers endogenous reactive oxygen species (ROS), increases resistance to H2O2-induced programmed cell death (PCD), and significantly lowers ROS levels generated by organic prooxidants. Reciprocally, Δoye2 yeast strains are sensitive to prooxidant-induced PCD. Overexpression and knock-out analysis indicate these OYE2 antioxidant activities are opposed by OYE3, a highly homologous heterodimerizing protein, which functions as a prooxidant promoting H2O2-induced PCD in wild type yeast. To exert its effect OYE3 requires the presence of OYE2. Deletion of the 12 C-terminal amino acids and catalytic inactivation of OYE2 by a Y197F mutation enhance significantly survival upon H2O2-induced PCD in wild type cells, but accelerate PCD in Δoye3 cells, implicating the oye2p-oye3p heterodimer for promoting cell death upon oxidative stress. Unexpectedly, a strain with a double knock-out of these genes (Δoye2 oye3) is highly resistant to H2O2-induced PCD, exhibits increased respiratory capacity, and undergoes less cell death during the adaptive response in chronological aging. Simultaneous deletion of OYE2 and other antioxidant genes hyperinduces endogenous levels of ROS, promoting H2O2-induced cell death: in Δoye2 glr1 yeast high levels of oxidized glutathione elicited gross morphological aberrations involving the actin cytoskeleton and defects in organelle partitioning. Altering the ratio of reduced to oxidized glutathione by exogenous addition of GSH fully reversed these alterations. Based on this work, OYE proteins are firmly placed in the signaling network connecting ROS generation, PCD modulation, and cytoskeletal dynamics in yeast.

2015 ◽  
Vol 128 ◽  
pp. 173-188 ◽  
Author(s):  
Valentina Longo ◽  
Maša Ždralević ◽  
Nicoletta Guaragnella ◽  
Sergio Giannattasio ◽  
Lello Zolla ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
M. Gokila Vani ◽  
K. J. Senthil Kumar ◽  
Jiunn-Wang Liao ◽  
Shih-Chang Chien ◽  
Jeng-Leun Mau ◽  
...  

In this study, we investigated the cytoprotective effects of antcin C, a steroid-like compound isolated from Antrodia cinnamaomea against AAPH-induced oxidative stress and apoptosis in human hepatic HepG2 cells. Pretreatment with antcin C significantly protects hepatic cells from AAPH-induced cell death through the inhibition of ROS generation. Furthermore, AAPH-induced lipid peroxidation, ALT/AST secretion and GSH depletion was significantly inhibited by antcin C. The antioxidant potential of antcin C was correlated with induction of antioxidant genes including, HO-1, NQO-1,γ-GCLC, and SODviatranscriptional activation of Nrf2. The Nrf2 activation by antcin C is mediated by JNK1/2 and PI3K activation, whereas pharmacologic inhibition of JNK1/2 and PI3K abolished antcin C-induced Nrf2 activity. In addition, AAPH-induced apoptosis was significantly inhibited by antcin C through the down-regulation of pro-apoptotic factors including, Bax, cytochrome c, capase 9, -4, -12, -3, and PARP.In vivostudies also show that antcin C significantly protected mice liver from AAPH-induced hepatic injury as evidenced by reduction in hepatic enzymes in circulation. Further, immunocytochemistry analyses showed that antcin C significantly increased HO-1 and Nrf2 expression in mice liver tissues. These results strongly suggest that antcin C could protect liver cells from oxidative stress and cell deathviaNrf2/ARE activation.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Kei Takayama ◽  
Hiroki Kaneko ◽  
Keiko Kataoka ◽  
Reona Kimoto ◽  
Shiang-Jyi Hwang ◽  
...  

Purpose. It is a matter of increasing concern that exposure to light-emitting diodes (LED), particularly blue light (BL), damages retinal cells. This study aimed to investigate the retinal pigment epithelium (RPE) damage caused by BL and to elucidate the role of nuclear factor (erythroid-derived)-related factor 2 (Nrf2) in the pathogenesis of BL-induced RPE damage.Methods. ARPE-19, a human RPE cell line, and mouse primary RPE cells from wild-type andNrf2knockout (Nrf2−/−) mice were cultured under blue LED exposure (intermediate wavelength, 450 nm). Cell death rate and reactive oxygen species (ROS) generation were measured. TUNEL staining was performed to detect apoptosis. Real-time polymerase chain reaction was performed onNRF2mRNA, and western blotting was performed to detect Nrf2 proteins in the nucleus or cytoplasm of RPE cells.Results. BL exposure increased cell death rate and ROS generation in ARPE-19 cells in a time-dependent manner; cell death was caused by apoptosis. Moreover, BL exposure inducedNRF2mRNA upregulation and Nrf2 nuclear translocation in RPE. Cell death rate was significantly higher in RPE cells fromNrf2−/−mice than from wild-type mice.Conclusions. The Nrf2 pathway plays an important role in protecting RPE cells against BL-induced oxidative stress.


2020 ◽  
Vol 31 (1) ◽  
pp. 3-10
Author(s):  
V. S. Nedzvetsky ◽  
V. Ya. Gasso ◽  
A. M. Hahut ◽  
I. A. Hasso

Cadmium is a common transition metal that entails an extremely wide range of toxic effects in humans and animals. The cytotoxicity of cadmium ions and its compounds is due to various genotoxic effects, including both DNA damage and chromosomal aberrations. Some bone diseases, kidney and digestive system diseases are determined as pathologies that are closely associated with cadmium intoxication. In addition, cadmium is included in the list of carcinogens because of its ability to initiate the development of tumors of several forms of cancer under conditions of chronic or acute intoxication. Despite many studies of the effects of cadmium in animal models and cohorts of patients, in which cadmium effects has occurred, its molecular mechanisms of action are not fully understood. The genotoxic effects of cadmium and the induction of programmed cell death have attracted the attention of researchers in the last decade. In recent years, the results obtained for in vivo and in vitro experimental models have shown extremely high cytotoxicity of sublethal concentrations of cadmium and its compounds in various tissues. One of the most studied causes of cadmium cytotoxicity is the development of oxidative stress and associated oxidative damage to macromolecules of lipids, proteins and nucleic acids. Brain cells are most sensitive to oxidative damage and can be a critical target of cadmium cytotoxicity. Thus, oxidative damage caused by cadmium can initiate genotoxicity, programmed cell death and inhibit their viability in the human and animal brains. To test our hypothesis, cadmium cytotoxicity was assessed in vivo in U251 glioma cells through viability determinants and markers of oxidative stress and apoptosis. The result of the cell viability analysis showed the dose-dependent action of cadmium chloride in glioma cells, as well as the generation of oxidative stress (p <0.05). Calculated for 48 hours of exposure, the LD50 was 3.1 μg×ml-1. The rates of apoptotic death of glioma cells also progressively increased depending on the dose of cadmium ions. A high correlation between cadmium concentration and apoptotic response (p <0.01) was found for cells exposed to 3–4 μg×ml-1 cadmium chloride. Moreover, a significant correlation was found between oxidative stress (lipid peroxidation) and induction of apoptosis. The results indicate a strong relationship between the generation of oxidative damage by macromolecules and the initiation of programmed cell death in glial cells under conditions of low doses of cadmium chloride. The presented results show that cadmium ions can induce oxidative damage in brain cells and inhibit their viability through the induction of programmed death. Such effects of cadmium intoxication can be considered as a model of the impact of heavy metal pollution on vertebrates.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Ida Perrotta ◽  
Valentina Carito ◽  
Emilio Russo ◽  
Sandro Tripepi ◽  
Saveria Aquila ◽  
...  

The word autophagy broadly refers to the cellular catabolic processes that lead to the removal of damaged cytosolic proteins or cell organelles through lysosomes. Although autophagy is often observed during programmed cell death, it may also serve as a cell survival mechanism. Accumulation of reactive oxygen species within tissues and cells induces various defense mechanisms or programmed cell death. It has been shown that, besides inducing apoptosis, oxidative stress can also induce autophagy. To date, however, the regulation of autophagy in response to oxidative stress remains largely elusive and poorly understood. Therefore, the present study was designed to examine the ratio between oxidative stress and autophagy in macrophages after oxidant exposure (AAPH) and to investigate the ultrastructural localization of beclin-1, a protein essential for autophagy, under basal and stressful conditions. Our data provide evidence that oxidative stress induces autophagy in macrophages. We demonstrate, for the first time by immunoelectron microscopy, the subcellular localization of beclin-1 in autophagic cells.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 59-59
Author(s):  
Marie-France Palin ◽  
Jérôme Lapointe ◽  
Claude Gariépy ◽  
Danièle Beaudry ◽  
Claudia Kalbe

Abstract Carnosine (β-alanyl-L-histidine) is a molecule naturally and exclusively present in muscle food with the highest concentrations found in skeletal muscles and brain of the animal. Among its numerous biochemical properties, carnosine has antioxidant activity which include metal ion chelation and free radical scavenging. We have recently reported that high muscle carnosine content in pig is associated with better meat quality. Moreover, supplementing pigs with β-alanine reduced oxidative damage to Longissimus muscle (LM) lipids and proteins. Among previously reported antioxidant activities, carnosine was found to limit the production of reactive oxygen species (ROS) and increase antioxidant enzyme activities. However, these studies were mainly conducted in rodents and cell lines and mechanisms in play remain to be characterized. To determine the effect of carnosine in preventing oxidative damage and characterize the mechanisms in play, we have undertaken experiments using the progeny (myoblasts) of satellite cells isolated from the LM of newborn piglets. Cells were treated with carnosine (0, 10, 25 and 50 mM) for 48 h and were then either collected immediately or treated with H2O2 (0.3 mM, 1 h) to induce an oxidative stress. Our results showed that carnosine prevents oxidative stress through the reduction of total intracellular ROS and by modulating the antioxidant system in myoblasts.Carnosine increased the mRNA abundance of NEF2L2, a transcription factor activated by oxidative stress, and several of its downstream regulated antioxidant genes. Western blot analyses further suggest that the protective effect of carnosine on H2O2-induced oxidative stress is mediated through the p38 MAPK intracellular pathway. Finally, the addition of carnosine to H2O2-treated myoblasts increased the basal cellular oxygen consumption rate (OCR), the ATP-linked OCR and proton leaks, thus suggesting an effect of carnosine on mitochondrial functions. Taken together, these findings demonstrate the important role of carnosine in preventing oxidative damage in porcine muscle cells.


2020 ◽  
Vol 10 (18) ◽  
pp. 6509
Author(s):  
Magdalena Kimsa-Dudek ◽  
Agata Krawczyk ◽  
Agnieszka Synowiec-Wojtarowicz

A redox imbalance disrupts the cellcycle and the proliferation process, and contributes to the initiation of programmed cell death. One of the pathways that are important for redox homeostasis is the Nrf2-ARE signaling pathway. Fluoride as well as static magnetic fields (SMF) are associated with the concepts of oxidative stress, and thus programmed cell death. Therefore, this study aimed to assess the connection between oxidative stress and apoptosis in human cells co-exposed to fluoride and a SMF with a different magnetic induction and to determine whether the Nrf2-signaling pathway is involved in these effects. The research was realized using normal human dermal fibroblasts that had been co-exposed to fluoride (0.3 mmol/L) and a SMF with a different magnetic induction (0.45 T, 0.55 T, 0.65 T) for 12 h. The mRNA levels of the cellular antioxidant system-related genes and apoptosis-related genes were assessed using the quantitative reverse transcription polymerase chain reaction (RT-qPCR) method. Our results indicated that the increased activity of antioxidant enzymes (SOD1 (superoxide dismutase 1), SOD2 and GSR (glutathione reductase)) suggests the restoration of the cell redox homeostasis that had been disturbed by fluoride, and also that the genes whose expression is associated with the induction of apoptosis are down regulated as a result of exposure to a SMF. The SMF with a 0.65 T flux density had the strongest effect on the fibroblasts. Moreover, our findings demonstrated that the Nrf2 transcription factor plays a crucial role in the protective effect of a SMF against fluoride toxicity in human cells. The results of these studies can form the basis for developing therapeutic strategies for apoptosis and oxidative stress-related diseases.


Sign in / Sign up

Export Citation Format

Share Document