scholarly journals The dynein light chain 8 (LC8) binds predominantly “in-register” to a multivalent intrinsically disordered partner

2020 ◽  
Vol 295 (15) ◽  
pp. 4912-4922 ◽  
Author(s):  
Patrick N. Reardon ◽  
Kayla A. Jara ◽  
Amber D. Rolland ◽  
Delaney A. Smith ◽  
Hanh T. M. Hoang ◽  
...  

Dynein light chain 8 (LC8) interacts with intrinsically disordered proteins (IDPs) and influences a wide range of biological processes. It is becoming apparent that among the numerous IDPs that interact with LC8, many contain multiple LC8-binding sites. Although it is established that LC8 forms parallel IDP duplexes with some partners, such as nucleoporin Nup159 and dynein intermediate chain, the molecular details of these interactions and LC8's interactions with other diverse partners remain largely uncharacterized. LC8 dimers could bind in either a paired “in-register” or a heterogeneous off-register manner to any of the available sites on a multivalent partner. Here, using NMR chemical shift perturbation, analytical ultracentrifugation, and native electrospray ionization MS, we show that LC8 forms a predominantly in-register complex when bound to an IDP domain of the multivalent regulatory protein ASCIZ. Using saturation transfer difference NMR, we demonstrate that at substoichiometric LC8 concentrations, the IDP domain preferentially binds to one of the three LC8 recognition motifs. Further, the differential dynamic behavior for the three sites and the size of the fully bound complex confirmed an in-register complex. Dynamics measurements also revealed that coupling between sites depends on the linker length separating these sites. These results identify linker length and motif specificity as drivers of in-register binding in the multivalent LC8–IDP complex assembly and the degree of compositional and conformational heterogeneity as a promising emerging mechanism for tuning of binding and regulation.

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3265 ◽  
Author(s):  
Vladimir N. Uversky

Cells are inhomogeneously crowded, possessing a wide range of intracellular liquid droplets abundantly present in the cytoplasm of eukaryotic and bacterial cells, in the mitochondrial matrix and nucleoplasm of eukaryotes, and in the chloroplast’s stroma of plant cells. These proteinaceous membrane-less organelles (PMLOs) not only represent a natural method of intracellular compartmentalization, which is crucial for successful execution of various biological functions, but also serve as important means for the processing of local information and rapid response to the fluctuations in environmental conditions. Since PMLOs, being complex macromolecular assemblages, possess many characteristic features of liquids, they represent highly dynamic (or fuzzy) protein–protein and/or protein–nucleic acid complexes. The biogenesis of PMLOs is controlled by specific intrinsically disordered proteins (IDPs) and hybrid proteins with ordered domains and intrinsically disordered protein regions (IDPRs), which, due to their highly dynamic structures and ability to facilitate multivalent interactions, serve as indispensable drivers of the biological liquid–liquid phase transitions (LLPTs) giving rise to PMLOs. In this article, the importance of the disorder-based supramolecular fuzziness for LLPTs and PMLO biogenesis is discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javier A. Iserte ◽  
Tamas Lazar ◽  
Silvio C. E. Tosatto ◽  
Peter Tompa ◽  
Cristina Marino-Buslje

Abstract Intrinsically disordered proteins/regions (IDPs/IDRs) are crucial components of the cell, they are highly abundant and participate ubiquitously in a wide range of biological functions, such as regulatory processes and cell signaling. Many of their important functions rely on protein interactions, by which they trigger or modulate different pathways. Sequence covariation, a powerful tool for protein contact prediction, has been applied successfully to predict protein structure and to identify protein–protein interactions mostly of globular proteins. IDPs/IDRs also mediate a plethora of protein–protein interactions, highlighting the importance of addressing sequence covariation-based inter-protein contact prediction of this class of proteins. Despite their importance, a systematic approach to analyze the covariation phenomena of intrinsically disordered proteins and their complexes is still missing. Here we carry out a comprehensive critical assessment of coevolution-based contact prediction in IDP/IDR complexes and detail the challenges and possible limitations that emerge from their analysis. We found that the coevolutionary signal is faint in most of the complexes of disordered proteins but positively correlates with the interface size and binding affinity between partners. In addition, we discuss the state-of-art methodology by biological interpretation of the results, formulate evaluation guidelines and suggest future directions of development to the field.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Tamiko Oguri ◽  
Youjeong Kwon ◽  
Jerry K. K. Woo ◽  
Gerd Prehna ◽  
Hyun Lee ◽  
...  

ABSTRACTBy screening a collection ofSalmonellamutants deleted for genes encoding small proteins of ≤60 amino acids, we identified three paralogous small genes (ymdF,STM14_1829, andyciG) required for wild-type flagellum-dependent swimming and swarming motility. TheymdF,STM14_1829, andyciGgenes encode small proteins of 55, 60, and 60 amino acid residues, respectively. A bioinformatics analysis predicted that these small proteins are intrinsically disordered proteins, and circular dichroism analysis of purified recombinant proteins confirmed that all three proteins are unstructured in solution. A mutant deleted for STM14_1829 showed the most severe motility defect, indicating that among the three paralogs, STM14_1829 is a key protein required for wild-type motility. We determined that relative to the wild type, the expression of the flagellin protein FliC is lower in the ΔSTM14_1829mutant due to the downregulation of theflhDCoperon encoding the FlhDC master regulator. By comparing the gene expression profiles between the wild-type and ΔSTM14_1829strains via RNA sequencing, we found that the gene encoding the response regulator PhoP is upregulated in the ΔSTM14_1829mutant, suggesting the indirect repression of theflhDCoperon by the activated PhoP. Homologs of STM14_1829 are conserved in a wide range of bacteria, includingEscherichia coliandPseudomonas aeruginosa. We showed that the inactivation of STM14_1829 homologs inE. coliandP. aeruginosaalso alters motility, suggesting that this family of small intrinsically disordered proteins may play a role in the cellular pathway(s) that affects motility.IMPORTANCEThis study reports the identification of a novel family of small intrinsically disordered proteins that are conserved in a wide range of flagellated and nonflagellated bacteria. Although this study identifies the role of these small proteins in the scope of flagellum-dependent motility inSalmonella, they likely play larger roles in a more conserved cellular pathway(s) that indirectly affects flagellum expression in the case of motile bacteria. Small intrinsically disordered proteins have not been well characterized in prokaryotes, and the results of our study provide a basis for their detailed functional characterization.


2022 ◽  
Author(s):  
Spencer Smyth ◽  
Zhenfu Zhang ◽  
Alaji Bah ◽  
Thomas Tsangaris ◽  
Jennifer Dawson ◽  
...  

Intrinsically disordered proteins (IDPs) play critical roles in regulatory protein interactions, but detailed structural/dynamics characterization of their ensembles remain challenging, both in isolation and they form dynamic fuzzy complexes. Such is the case for mRNA cap-dependent translation initiation, which is regulated by the interaction of the predominantly folded eukaryotic initiation factor 4E (eIF4E) with the intrinsically disordered eIF4E binding proteins (4E-BPs) in a phosphorylation-dependent manner. Single-molecule Forster resonance energy transfer showed that the conformational changes of 4E-BP2 induced by binding to eIF4E are non-uniform along the sequence; while a central region containing both motifs that bind to eIF4E expands and becomes stiffer, the C-terminal region is less affected. Fluorescence anisotropy decay revealed a nonuniform segmental flexibility around six different labelling sites along the chain. Dynamic quenching of these fluorescent probes by intrinsic aromatic residues measured via fluorescence correlation spectroscopy report on transient intra- and inter-molecular contacts on nanosecond-microsecond timescales. Upon hyperphosphorylation, which induces folding of ~40 residues in 4E-BP2, the quenching rates decreased at labelling sites closest to the phosphorylation sites and within the folded domain, and increased at the other sites. The chain dynamics around sites in the C-terminal region far away from the two binding motifs were significantly reduced upon binding to eIF4E, suggesting that this region is also involved in the highly dynamic 4E-BP2:eIF4E complex. Our time-resolved fluorescence data paint a sequence-level rigidity map of three states of 4E-BP2 differing in phosphorylation or binding status and distinguish regions that form contacts with eIF4E. This study adds complementary structural and dynamics information to recent studies of 4E-BP2, and it constitutes an important step towards a mechanistic understanding of this important IDP via integrative modelling.


2021 ◽  
Author(s):  
Clemens Kauffmann ◽  
Irene Ceccolini ◽  
Georg Kontaxis ◽  
Robert Konrat

Abstract. Among the numerous contributions of Geoffrey Bodenhausen to NMR spectroscopy his developments in the field of spin-relaxation methodology and theory will definitely have a long lasting impact. Starting with his seminal contributions to the excitation of multiple-quantum coherences he and his group thoroughly investigated the intricate relaxation properties of these “forbidden fruits” and developed experimental techniques to reveal the relevance of previously largely ignored cross-correlated relaxation (CCR) effects, as “the essential is invisible to the eyes”. Here we want to discuss CCR within the challenging context of intrinsically disordered proteins (IDPs) and emphasize its potential and relevance for the studies of structural dynamics of IDPs in the future years to come. Conventionally, dynamics of globularly folded proteins are modeled and understood as deviations from otherwise rigid structures tumbling in solution. However, with increasing protein flexibility, as observed for IDPs, this apparent dichotomy between structure and dynamics becomes blurred. Although complex dynamics and ensemble averaging might impair the extraction of mechanistic details even further, spin-relaxation uniquely encodes a protein’s structural memory, i.e. the temporal persistence of concerted motions and structural arrangements. Due to significant methodological developments, such as high-dimensional non-uniform sampling techniques, spin-relaxation in IDPs can now be monitored in unprecedented resolution. Not embedded within a rigid globular fold, conventional 15N spin probes might not suffice to capture the inherently local nature of IDP dynamics. To better describe and understand possible segmental motions of IDPs, we propose an experimental approach to detect the signature of diffusion anisotropy by quantifying cross-correlated spin relaxation of individual 15N1HN and 13C'13Cα spin pairs. By adapting Geoffrey Bodenhausen’s symmetrical reconversion principle to obtain zero frequency spectral density values we can define and demonstrate more sensitive means to characterize segmental anisotropic diffusion in IDPs.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sarah E. Bondos ◽  
A. Keith Dunker ◽  
Vladimir N. Uversky

AbstractFor proteins, the sequence → structure → function paradigm applies primarily to enzymes, transmembrane proteins, and signaling domains. This paradigm is not universal, but rather, in addition to structured proteins, intrinsically disordered proteins and regions (IDPs and IDRs) also carry out crucial biological functions. For these proteins, the sequence → IDP/IDR ensemble → function paradigm applies primarily to signaling and regulatory proteins and regions. Often, in order to carry out function, IDPs or IDRs cooperatively interact, either intra- or inter-molecularly, with structured proteins or other IDPs or intermolecularly with nucleic acids. In this IDP/IDR thematic collection published in Cell Communication and Signaling, thirteen articles are presented that describe IDP/IDR signaling molecules from a variety of organisms from humans to fruit flies and tardigrades (“water bears”) and that describe how these proteins and regions contribute to the function and regulation of cell signaling. Collectively, these papers exhibit the diverse roles of disorder in responding to a wide range of signals as to orchestrate an array of organismal processes. They also show that disorder contributes to signaling in a broad spectrum of species, ranging from micro-organisms to plants and animals.


Algorithms ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 46 ◽  
Author(s):  
Hao He ◽  
Jiaxiang Zhao ◽  
Guiling Sun

Intrinsically disordered proteins perform a variety of important biological functions, which makes their accurate prediction useful for a wide range of applications. We develop a scheme for predicting intrinsically disordered proteins by employing 35 features including eight structural properties, seven physicochemical properties and 20 pieces of evolutionary information. In particular, the scheme includes a preprocessing procedure which greatly reduces the input features. Using two different windows, the preprocessed data containing not only the properties of the surroundings of the target residue but also the properties related to the specific target residue are fed into a multi-layer perceptron neural network as its inputs. The Adam algorithm for the back propagation together with the dropout algorithm to avoid overfitting are introduced during the training process. The training as well as testing our procedure is performed on the dataset DIS803 from a DisProt database. The simulation results show that the performance of our scheme is competitive in comparison with ESpritz and IsUnstruct.


2020 ◽  
Vol 48 (10) ◽  
pp. 5318-5331 ◽  
Author(s):  
Akshay Sridhar ◽  
Modesto Orozco ◽  
Rosana Collepardo-Guevara

Abstract Intrinsically disordered proteins are crucial elements of chromatin heterogenous organization. While disorder in the histone tails enables a large variation of inter-nucleosome arrangements, disorder within the chromatin-binding proteins facilitates promiscuous binding to a wide range of different molecular targets, consistent with structural heterogeneity. Among the partially disordered chromatin-binding proteins, the H1 linker histone influences a myriad of chromatin characteristics including compaction, nucleosome spacing, transcription regulation, and the recruitment of other chromatin regulating proteins. Although it is now established that the long C-terminal domain (CTD) of H1 remains disordered upon nucleosome binding and that such disorder favours chromatin fluidity, the structural behaviour and thereby the role/function of the N-terminal domain (NTD) within chromatin is yet unresolved. On the basis of microsecond-long parallel-tempering metadynamics and temperature-replica exchange atomistic molecular dynamics simulations of different H1 NTD subtypes, we demonstrate that the NTD is completely unstructured in solution but undergoes an important disorder-to-order transition upon nucleosome binding: it forms a helix that enhances its DNA binding ability. Further, we show that the helical propensity of the H1 NTD is subtype-dependent and correlates with the experimentally observed binding affinity of H1 subtypes, suggesting an important functional implication of this disorder-to-order transition.


2017 ◽  
Author(s):  
Sankar Basu ◽  
Parbati Biswas

AbstractIntrinsically Disordered Proteins (IDPs) are enriched in charged and polar residues; and, therefore, electrostatic interactions play a predominant role in their dynamics. In order to remain multi-functional and exhibit their characteristic binding promiscuity, they need to retain considerable dynamic flexibility. At the same time, they also need to accommodate a large number of oppositely charged residues, which eventually lead to the formation of salt-bridges, imparting local rigidity. The formation of salt-bridges therefore oppose the desired dynamic flexibility. Hence, there appears to be a meticulous trade-off between the two mechanisms which the current study attempts to unravel. With this objective, we identify and analyze salt-bridges, both as isolated as well as composite ionic bond motifs, in the molecular dynamic trajectories of a set of appropriately chosen IDPs. Time evolved structural properties of these salt-bridges like persistence, associated secondary structural ′order-disorder′ transitions, correlated atomic movements, contribution in the overall electrostatic balance of the proteins have been studied in necessary detail. The results suggest that the key to maintain such a trade-off over time is the continuous formation and dissolution of salt-bridges with a wide range of persistence. Also, the continuous dynamic interchange of charged-atom-pairs (coming from a variety of oppositely charged side-chains) in the transient ionic bonds supports a model of dynamic flexibility concomitant with the well characterized stochastic conformational switching in these proteins. The results and conclusions should facilitate the future design of salt-bridges as a mean to further explore the disordered-globular interface in proteins.


Sign in / Sign up

Export Citation Format

Share Document