scholarly journals Modulation of glycosyltransferase ST6Gal-I in gastric cancer-derived organoids disrupts homeostatic epithelial cell turnover

2020 ◽  
Vol 295 (41) ◽  
pp. 14153-14163
Author(s):  
Katie L. Alexander ◽  
Carolina A. Serrano ◽  
Asmi Chakraborty ◽  
Marie Nearing ◽  
Leona N. Council ◽  
...  

Programmed cell death promotes homeostatic cell turnover in the epithelium but is dysregulated in cancer. The glycosyltransferase ST6Gal-I is known to block homeostatic apoptosis through α2,6-linked sialylation of the death receptor TNFR1 in many cell types. However, its role has not been investigated in gastric epithelial cells or gastric tumorigenesis. We determined that human gastric antral epithelium rarely expressed ST6Gal-I, but the number of ST6Gal-I–expressing epithelial cells increased significantly with advancing premalignancy leading to cancer. The mRNA expression levels of ST6GAL-I and SOX9 in human gastric epithelial cells correlated positively with one another through the premalignancy cascade, indicating that increased epithelial cell expression of ST6Gal-I is associated with premalignant progression. To determine the functional impact of increased ST6Gal-I, we generated human gastric antral organoids from epithelial stem cells and differentiated epithelial monolayers from gastric organoids. Gastric epithelial stem cells strongly expressed ST6Gal-I, suggesting a novel biomarker of stemness. In contrast, organoid-derived epithelial monolayers expressed markedly reduced ST6Gal-I and underwent TNF-induced, caspase-mediated apoptosis, consistent with homeostasis. Conversely, epithelial monolayers generated from gastric cancer stem cells retained high levels of ST6Gal-I and resisted TNF-induced apoptosis, supporting prolonged survival. Protection from TNF-induced apoptosis depended on ST6Gal-I overexpression, because forced ST6Gal-I overexpression in normal gastric stem cell–differentiated monolayers inhibited TNF-induced apoptosis, and cleavage of α2,6-linked sialic acids from gastric cancer organoid-derived monolayers restored susceptibility to TNF-induced apoptosis. These findings implicate up-regulated ST6Gal-I expression in blocking homeostatic epithelial cell apoptosis in gastric cancer pathogenesis, suggesting a mechanism for prolonged epithelioid tumor cell survival.

2013 ◽  
Vol 81 (7) ◽  
pp. 2468-2477 ◽  
Author(s):  
Alexander Sheh ◽  
Rupesh Chaturvedi ◽  
D. Scott Merrell ◽  
Pelayo Correa ◽  
Keith T. Wilson ◽  
...  

ABSTRACTWhileHelicobacter pyloriinfects over 50% of the world's population, the mechanisms involved in the development of gastric disease are not fully understood. Bacterial, host, and environmental factors play a role in disease outcome. To investigate the role of bacterial factors inH. pyloripathogenesis, global gene expression of sixH. pyloriisolates was analyzed during coculture with gastric epithelial cells. Clustering analysis of six Colombian clinical isolates from a region with low gastric cancer risk and a region with high gastric cancer risk segregated strains based on their phylogeographic origin. One hundred forty-six genes had increased expression in European strains, while 350 genes had increased expression in African strains. Differential expression was observed in genes associated with motility, pathogenicity, and other adaptations to the host environment. European strains had greater expression of the virulence factorscagA,vacA, andbabBand were associated with increased gastric histologic lesions in patients. In AGS cells, European strains promoted significantly higher interleukin-8 (IL-8) expression than did African strains. African strains significantly induced apoptosis, whereas only one European strain significantly induced apoptosis. Our data suggest that gene expression profiles of clinical isolates can discriminate strains by phylogeographic origin and that these profiles are associated with changes in expression of the proinflammatory and protumorigenic cytokine IL-8 and levels of apoptosis in host epithelial cells. These findings support the hypothesis that bacterial factors determined by the phylogeographic origin ofH. pyloristrains may promote increased gastric disease.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Shaokun Zhang ◽  
Zaoxia Liu ◽  
Guanfang Su ◽  
Hong Wu

The limbal epithelial cells can be maintained on 3T3 feeder layer with fetal bovine serum supplemented culture medium, and these cells have been used to successfully treat limbal stem cell deficiency. However, fetal bovine serum contains unknown components and displays quantitative and qualitative lot-to-lot variations. To improve the culture condition, the defined KnockOut serum replacement was investigated to replace fetal bovine serum for culturing human limbal epithelial cell. Human primary limbal epithelial cells were cultured in KnockOut serum and fetal bovine serum supplemented medium, respectively. The cell growth rate, gene expression, and maintenance of limbal epithelial stem cells were studied and compared between these two groups. Human primary limbal epithelial cells were isolated and successfully serially cultivated in this novel KnockOut serum supplemented medium; the cell proliferation and stem cell maintenance were similar to those of cells grown in fetal bovine serum supplemented medium. These data suggests that this KnockOut serum supplemented medium is an efficient replacement to traditional fetal bovine serum supplemented medium for limbal epithelial cell culture, and this medium has great potential for long term maintenance of limbal epithelial cells, limbal epithelial stem cells transplantation, and tissue regeneration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nongthombam Boby ◽  
Xuewei Cao ◽  
Alyssa Ransom ◽  
Barcley T. Pace ◽  
Christopher Mabee ◽  
...  

Epithelial cell injury and impaired epithelial regeneration are considered key features in HIV pathogenesis and contribute to HIV-induced generalized immune activation. Understanding the molecular mechanisms underlying the disrupted epithelial regeneration might provide an alternative approach for the treatment of HIV-mediated enteropathy and immune activation. We have observed a significant increased presence of α defensin5+ (HD5) Paneth cells and proliferating Ki67+ epithelial cells as well as decreased expression of E-cadherin expression in epithelial cells during SIV infection. SIV infection did not significantly influence the frequency of LGR5+ stem cells, but the frequency of HD5+ cells was significantly higher compared to uninfected controls in jejunum. Our global transcriptomics analysis of enteroids provided novel information about highly significant changes in several important pathways like metabolic, TCA cycle, and oxidative phosphorylation, where the majority of the differentially expressed genes were downregulated in enteroids grown from chronically SIV-infected macaques compared to the SIV-uninfected controls. Despite the lack of significant reduction in LGR5+ stem cell population, the dysregulation of several intestinal stem cell niche factors including Notch, mTOR, AMPK and Wnt pathways as well as persistence of inflammatory cytokines and chemokines and loss of epithelial barrier function in enteroids further supports that SIV infection impacts on epithelial cell proliferation and intestinal homeostasis.


2000 ◽  
Vol 118 (4) ◽  
pp. A532
Author(s):  
Osamu Handa ◽  
Yuji Naito ◽  
Tomohisa Takagi ◽  
Takeshi Ishikawa ◽  
Naohisa Matsumoto ◽  
...  

2011 ◽  
Vol 140 (5) ◽  
pp. S-39
Author(s):  
Hanchen Li ◽  
Calin Stoicov ◽  
Jian Hua Liu ◽  
Jean Marie Houghton

2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 243-243
Author(s):  
Manikandan Palrasu ◽  
Elena Zaika ◽  
El-Rifai Wael ◽  
Richard Peek ◽  
Alexander Zaika

243 Background: Helicobacter pylori ( H. pylori) is the strongest known risk factor for gastric cancer. Bacterial degradation of tumor suppressor proteins affect the host microbe’s interactions and host cellular response, which contribute to tumorigenesis. p14ARF, a crucial tumor suppressor protein that activates p53 protein under oncogenic stress plays a major role in oncogenic stress response (OSR) regulation. However, little is known about the mechanism of ARF and OSR regulation in H. pylori-infected gastric epithelial cells. Methods: The expression of p14ARF and cytotoxin-associated gene A (CagA) were analyzed in gastric cells co-cultured with H. pylori strains isolated from high-gastric risk and low-gastric risk areas by immunoblotting. To investigate the potential role of CagA in regulation of p14ARF, we employed isogenic cagA− and cagE− H. pylori mutants in gastric epithelial cells, and C57BL/6 mice (n = 10). We also analyzed the expression of Siva1 in human individual infected with cagA-positive (n = 13) and cagA-negative (n = 13) bacteria as well as uninfected human subjects (n = 6). siRNA was used to inhibit activity of Siva1 protein. Results: In this study, H. pylori strains expressing high levels of CagA virulence factor and associated with a higher gastric cancer risk more strongly suppress p14ARF compared with low-risk strains in vivo and in vitro. We found that degradation of p14ARF induced by CagA is mediated by E3 ubiquitin ligase Siva1, which works in concert with another E3 ubiquitin ligase TRIP12. Decreased expression of Siva1 protein and consequent up-regulation of p14ARF was also found in gastric mucosa of H. pylori-infected mice and human individuals. Tumorigenic strain 7.13 was more potent in upregulation of Siva1 and downregulation of p14ARF than non-tumorigenic strain B128. Inhibition of p14ARF protein by H. pylori causes inhibition of autophagy in infected cells. Conclusions: Our results provide first evidence that carcinogenic H. pylori strains significantly alter the host tumor suppressor protein p14ARF, leading to suppression of host OSR and autophagy, which may affect host-bacteria interactions and tumorigenic alteration in the stomach.


1990 ◽  
Vol 110 (4) ◽  
pp. 939-945 ◽  
Author(s):  
S Dübel ◽  
H C Schaller

Using bromodeoxyuridine incorporation to label cells in S phase we found that ectodermal epithelial cells of Hydra can start and complete their terminal differentiation in the G2 phase of the cell cycle. Most of the cells traversed their last S phase before the signal for differentiation, namely excision of head or foot, was given. The S phase inhibitor aphidicolin accordingly did not inhibit head or foot specific differentiation. The results show that differentiation to either head- or foot-specific ectodermal epithelial cells can start and is completed within the same G2 phase. This is therefore the first description of a complete differentiation from a population of proliferating cells to terminally differentiated, cell cycle-arrested cells without the necessity of passing through an S phase or mitosis.


2002 ◽  
Vol 33 (4) ◽  
pp. 167-175
Author(s):  
Barbara Obst ◽  
Silke Schütz ◽  
Susanne Ledig ◽  
Siegfried Wagner ◽  
Winfried Beil

Sign in / Sign up

Export Citation Format

Share Document