The time-course of morphological constraints

2008 ◽  
Vol 3 (2) ◽  
pp. 149-175 ◽  
Author(s):  
Ian Cunnings ◽  
Harald Clahsen

The avoidance of regular but not irregular plurals inside compounds (e.g., *rats eater vs. mice eater) has been one of the most widely studied morphological phenomena in the psycholinguistics literature. To examine whether the constraints that are responsible for this contrast have any general significance beyond compounding, we investigated derived word forms containing regular and irregular plurals in two experiments. Experiment 1 was an offline acceptability judgment task, and Experiment 2 measured eye movements during reading derived words containing regular and irregular plurals and uninflected base nouns. The results from both experiments show that the constraint against regular plurals inside compounds generalizes to derived words. We argue that this constraint cannot be reduced to phonological properties, but is instead morphological in nature. The eye-movement data provide detailed information on the time-course of processing derived word forms indicating that early stages of processing are affected by a general constraint that disallows inflected words from feeding derivational processes, and that the more specific constraint against regular plurals comes in at a subsequent later stage of processing. We argue that these results are consistent with stage-based models of language processing.

2019 ◽  
Vol 24 (4) ◽  
pp. 297-311
Author(s):  
José David Moreno ◽  
José A. León ◽  
Lorena A. M. Arnal ◽  
Juan Botella

Abstract. We report the results of a meta-analysis of 22 experiments comparing the eye movement data obtained from young ( Mage = 21 years) and old ( Mage = 73 years) readers. The data included six eye movement measures (mean gaze duration, mean fixation duration, total sentence reading time, mean number of fixations, mean number of regressions, and mean length of progressive saccade eye movements). Estimates were obtained of the typified mean difference, d, between the age groups in all six measures. The results showed positive combined effect size estimates in favor of the young adult group (between 0.54 and 3.66 in all measures), although the difference for the mean number of fixations was not significant. Young adults make in a systematic way, shorter gazes, fewer regressions, and shorter saccadic movements during reading than older adults, and they also read faster. The meta-analysis results confirm statistically the most common patterns observed in previous research; therefore, eye movements seem to be a useful tool to measure behavioral changes due to the aging process. Moreover, these results do not allow us to discard either of the two main hypotheses assessed for explaining the observed aging effects, namely neural degenerative problems and the adoption of compensatory strategies.


2013 ◽  
Vol 29 (1) ◽  
pp. 7-31 ◽  
Author(s):  
Harald Clahsen ◽  
Loay Balkhair ◽  
John-Sebastian Schutter ◽  
Ian Cunnings

We report findings from psycholinguistic experiments investigating the detailed timing of processing morphologically complex words by proficient adult second (L2) language learners of English in comparison to adult native (L1) speakers of English. The first study employed the masked priming technique to investigate - ed forms with a group of advanced Arabic-speaking learners of English. The results replicate previously found L1/L2 differences in morphological priming, even though in the present experiment an extra temporal delay was offered after the presentation of the prime words. The second study examined the timing of constraints against inflected forms inside derived words in English using the eye-movement monitoring technique and an additional acceptability judgment task with highly advanced Dutch L2 learners of English in comparison to adult L1 English controls. Whilst offline the L2 learners performed native-like, the eye-movement data showed that their online processing was not affected by the morphological constraint against regular plurals inside derived words in the same way as in native speakers. Taken together, these findings indicate that L2 learners are not just slower than native speakers in processing morphologically complex words, but that the L2 comprehension system employs real-time grammatical analysis (in this case, morphological information) less than the L1 system.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5178
Author(s):  
Sangbong Yoo ◽  
Seongmin Jeong ◽  
Seokyeon Kim ◽  
Yun Jang

Gaze movement and visual stimuli have been utilized to analyze human visual attention intuitively. Gaze behavior studies mainly show statistical analyses of eye movements and human visual attention. During these analyses, eye movement data and the saliency map are presented to the analysts as separate views or merged views. However, the analysts become frustrated when they need to memorize all of the separate views or when the eye movements obscure the saliency map in the merged views. Therefore, it is not easy to analyze how visual stimuli affect gaze movements since existing techniques focus excessively on the eye movement data. In this paper, we propose a novel visualization technique for analyzing gaze behavior using saliency features as visual clues to express the visual attention of an observer. The visual clues that represent visual attention are analyzed to reveal which saliency features are prominent for the visual stimulus analysis. We visualize the gaze data with the saliency features to interpret the visual attention. We analyze the gaze behavior with the proposed visualization to evaluate that our approach to embedding saliency features within the visualization supports us to understand the visual attention of an observer.


1972 ◽  
Vol 35 (1) ◽  
pp. 103-110
Author(s):  
Phillip Kleespies ◽  
Morton Wiener

This study explored (1) for evidence of visual input at so-called “subliminal” exposure durations, and (2) whether the response, if any, was a function of the thematic content of the stimulus. Thematic content (threatening versus non-threatening) and stimulus structure (angular versus curved) were varied independently under “subliminal,” “part-cue,” and “identification” exposure conditions. With Ss' reports and the frequency and latency of first eye movements (“orienting reflex”) as input indicators, there was no evidence of input differences which are a function of thematic content at any exposure duration, and the “report” data were consistent with the eye-movement data.


2020 ◽  
Author(s):  
Šimon Kucharský ◽  
Daan Roelof van Renswoude ◽  
Maartje Eusebia Josefa Raijmakers ◽  
Ingmar Visser

Describing, analyzing and explaining patterns in eye movement behavior is crucial for understanding visual perception. Further, eye movements are increasingly used in informing cognitive process models. In this article, we start by reviewing basic characteristics and desiderata for models of eye movements. Specifically, we argue that there is a need for models combining spatial and temporal aspects of eye-tracking data (i.e., fixation durations and fixation locations), that formal models derived from concrete theoretical assumptions are needed to inform our empirical research, and custom statistical models are useful for detecting specific empirical phenomena that are to be explained by said theory. In this article, we develop a conceptual model of eye movements, or specifically, fixation durations and fixation locations, and from it derive a formal statistical model --- meeting our goal of crafting a model useful in both the theoretical and empirical research cycle. We demonstrate the use of the model on an example of infant natural scene viewing, to show that the model is able to explain different features of the eye movement data, and to showcase how to identify that the model needs to be adapted if it does not agree with the data. We conclude with discussion of potential future avenues for formal eye movement models.


Author(s):  
Gavindya Jayawardena ◽  
Sampath Jayarathna

Eye-tracking experiments involve areas of interest (AOIs) for the analysis of eye gaze data. While there are tools to delineate AOIs to extract eye movement data, they may require users to manually draw boundaries of AOIs on eye tracking stimuli or use markers to define AOIs. This paper introduces two novel techniques to dynamically filter eye movement data from AOIs for the analysis of eye metrics from multiple levels of granularity. The authors incorporate pre-trained object detectors and object instance segmentation models for offline detection of dynamic AOIs in video streams. This research presents the implementation and evaluation of object detectors and object instance segmentation models to find the best model to be integrated in a real-time eye movement analysis pipeline. The authors filter gaze data that falls within the polygonal boundaries of detected dynamic AOIs and apply object detector to find bounding-boxes in a public dataset. The results indicate that the dynamic AOIs generated by object detectors capture 60% of eye movements & object instance segmentation models capture 30% of eye movements.


Author(s):  
Anne E. Cook ◽  
Wei Wei

This chapter provides an overview of eye movement-based reading measures and the types of inferences that may be drawn from each. We provide logistical advice about how to set up stimuli for eye tracking experiments, with different level processes (word, sentence, and discourse) and commonly employed measures of eye movements during reading in mind. We conclude with examples from our own research of studies of eye movements during reading at the word, sentence, and discourse levels, as well as some considerations for future research.


2020 ◽  
Vol 24 (1) ◽  
pp. 69-82
Author(s):  
Olga Parshina ◽  
Anna K. Laurinavichyute ◽  
Irina A. Sekerina

AbstractThis eye-tracking study establishes basic benchmarks of eye movements during reading in heritage language (HL) by Russian-speaking adults and adolescents of high (n = 21) and low proficiency (n = 27). Heritage speakers (HSs) read sentences in Cyrillic, and their eye movements were compared to those of Russian monolingual skilled adult readers, 8-year-old children and L2 learners. Reading patterns of HSs revealed longer mean fixation durations, lower skipping probabilities, and higher regressive saccade rates than in monolingual adults. High-proficient HSs were more similar to monolingual children, while low-proficient HSs performed on par with L2 learners. Low-proficient HSs differed from high-proficient HSs in exhibiting lower skipping probabilities, higher fixation counts, and larger frequency effects. Taken together, our findings are consistent with the weaker links account of bilingual language processing as well as the divergent attainment theory of HL.


2018 ◽  
Vol 72 (4) ◽  
pp. 847-857
Author(s):  
Rebecca L Johnson ◽  
Sarah Rose Slate ◽  
Allison R Teevan ◽  
Barbara J Juhasz

Research exploring the processing of morphologically complex words, such as compound words, has found that they are decomposed into their constituent parts during processing. Although much is known about the processing of compound words, very little is known about the processing of lexicalised blend words, which are created from parts of two words, often with phoneme overlap (e.g., brunch). In the current study, blends were matched with non-blend words on a variety of lexical characteristics, and blend processing was examined using two tasks: a naming task and an eye-tracking task that recorded eye movements during reading. Results showed that blend words were processed more slowly than non-blend control words in both tasks. Blend words led to longer reaction times in naming and longer processing times on several eye movement measures compared to non-blend words. This was especially true for blends that were long, rated low in word familiarity, but were easily recognisable as blends.


2019 ◽  
Vol 116 (6) ◽  
pp. 2027-2032 ◽  
Author(s):  
Jasper H. Fabius ◽  
Alessio Fracasso ◽  
Tanja C. W. Nijboer ◽  
Stefan Van der Stigchel

Humans move their eyes several times per second, yet we perceive the outside world as continuous despite the sudden disruptions created by each eye movement. To date, the mechanism that the brain employs to achieve visual continuity across eye movements remains unclear. While it has been proposed that the oculomotor system quickly updates and informs the visual system about the upcoming eye movement, behavioral studies investigating the time course of this updating suggest the involvement of a slow mechanism, estimated to take more than 500 ms to operate effectively. This is a surprisingly slow estimate, because both the visual system and the oculomotor system process information faster. If spatiotopic updating is indeed this slow, it cannot contribute to perceptual continuity, because it is outside the temporal regime of typical oculomotor behavior. Here, we argue that the behavioral paradigms that have been used previously are suboptimal to measure the speed of spatiotopic updating. In this study, we used a fast gaze-contingent paradigm, using high phi as a continuous stimulus across eye movements. We observed fast spatiotopic updating within 150 ms after stimulus onset. The results suggest the involvement of a fast updating mechanism that predictively influences visual perception after an eye movement. The temporal characteristics of this mechanism are compatible with the rate at which saccadic eye movements are typically observed in natural viewing.


Sign in / Sign up

Export Citation Format

Share Document