scholarly journals WALD-EM: Wald Accumulation for Locations and Durations of Eye Movements

2020 ◽  
Author(s):  
Šimon Kucharský ◽  
Daan Roelof van Renswoude ◽  
Maartje Eusebia Josefa Raijmakers ◽  
Ingmar Visser

Describing, analyzing and explaining patterns in eye movement behavior is crucial for understanding visual perception. Further, eye movements are increasingly used in informing cognitive process models. In this article, we start by reviewing basic characteristics and desiderata for models of eye movements. Specifically, we argue that there is a need for models combining spatial and temporal aspects of eye-tracking data (i.e., fixation durations and fixation locations), that formal models derived from concrete theoretical assumptions are needed to inform our empirical research, and custom statistical models are useful for detecting specific empirical phenomena that are to be explained by said theory. In this article, we develop a conceptual model of eye movements, or specifically, fixation durations and fixation locations, and from it derive a formal statistical model --- meeting our goal of crafting a model useful in both the theoretical and empirical research cycle. We demonstrate the use of the model on an example of infant natural scene viewing, to show that the model is able to explain different features of the eye movement data, and to showcase how to identify that the model needs to be adapted if it does not agree with the data. We conclude with discussion of potential future avenues for formal eye movement models.

2020 ◽  
Vol 13 (4) ◽  
Author(s):  
Anna Fiona Weiss

In this article we present a new eye movement control framework that describes the interaction between fixation durations and regressive saccades during reading: The Information Gathering Framework (IGF). Based on the FC model proposed by Bicknell and Levy (2010), the basic idea of the IGF is that a confidence level for each word is computed while being monitored by three independent thresholds. These thresholds shape eye movement behavior by increasing fixation duration, triggering a regression, or guiding regression target selection. In this way, the IGF does not only account for regressive eye movements but also provides a framework able to model eye movement control during reading across different scenarios. Importantly, within the IGF it is assumed that two different types of regressive eye movements exist which differ with regard to their releases (integrations difficulties vs. missing evidence) but also with regard to their time course. We tested the predictions of the IGF by re-analyzing an experiment of Weiss et al. (2018) and found, inter alia, clear evidence for shorter fixation durations before regressive saccades relative to progressive saccades, with the exception of the last region. This clearly supports the assumptions of the IGF. In addition, we found evidence that there exists a window of about 15–20 characters to the left of the current fixation that plays an important role in target selection, probably indicating the perceptual span during a regressive saccade.


2022 ◽  
Author(s):  
Anke Cajar ◽  
Ralf Engbert ◽  
Jochen Laubrock

The availability of large eye-movement corpora has become increasingly important over the past years. In scene viewing, scan-path analyses of time-ordered fixations, for example, allow for investigating individual differences in spatial correlations between fixation locations, or for predicting individual viewing behavior in the context of computational models. However, time-dependent analyses require many fixations per scene, and only few large eye-movement corpora are publicly available. This manuscript presents a new corpus with eye-movement data from two hundred participants. Viewers memorized or searched either color or grayscale scenes while high or low spatial frequencies were filtered in central or peripheral vision. Our database provides the scenes from the experiment with corresponding object annotations, preprocessed eye-movement data, and heatmaps and fixation clusters based on empirical fixation locations. Besides time-dependent analyses, the corpus data allow for investigating questions that have received little attention in scene-viewing research so far: (i) eye-movement behavior under different task instructions, (ii) the importance of color and spatial frequencies when performing these tasks, and (iii) the individual roles and interaction of central and peripheral vision during scene viewing. Furthermore, the corpus allows for validation of computational models of attention and eye-movement control, and finally, analyses on an object- or cluster-based level.


2019 ◽  
Vol 24 (4) ◽  
pp. 297-311
Author(s):  
José David Moreno ◽  
José A. León ◽  
Lorena A. M. Arnal ◽  
Juan Botella

Abstract. We report the results of a meta-analysis of 22 experiments comparing the eye movement data obtained from young ( Mage = 21 years) and old ( Mage = 73 years) readers. The data included six eye movement measures (mean gaze duration, mean fixation duration, total sentence reading time, mean number of fixations, mean number of regressions, and mean length of progressive saccade eye movements). Estimates were obtained of the typified mean difference, d, between the age groups in all six measures. The results showed positive combined effect size estimates in favor of the young adult group (between 0.54 and 3.66 in all measures), although the difference for the mean number of fixations was not significant. Young adults make in a systematic way, shorter gazes, fewer regressions, and shorter saccadic movements during reading than older adults, and they also read faster. The meta-analysis results confirm statistically the most common patterns observed in previous research; therefore, eye movements seem to be a useful tool to measure behavioral changes due to the aging process. Moreover, these results do not allow us to discard either of the two main hypotheses assessed for explaining the observed aging effects, namely neural degenerative problems and the adoption of compensatory strategies.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5178
Author(s):  
Sangbong Yoo ◽  
Seongmin Jeong ◽  
Seokyeon Kim ◽  
Yun Jang

Gaze movement and visual stimuli have been utilized to analyze human visual attention intuitively. Gaze behavior studies mainly show statistical analyses of eye movements and human visual attention. During these analyses, eye movement data and the saliency map are presented to the analysts as separate views or merged views. However, the analysts become frustrated when they need to memorize all of the separate views or when the eye movements obscure the saliency map in the merged views. Therefore, it is not easy to analyze how visual stimuli affect gaze movements since existing techniques focus excessively on the eye movement data. In this paper, we propose a novel visualization technique for analyzing gaze behavior using saliency features as visual clues to express the visual attention of an observer. The visual clues that represent visual attention are analyzed to reveal which saliency features are prominent for the visual stimulus analysis. We visualize the gaze data with the saliency features to interpret the visual attention. We analyze the gaze behavior with the proposed visualization to evaluate that our approach to embedding saliency features within the visualization supports us to understand the visual attention of an observer.


1972 ◽  
Vol 35 (1) ◽  
pp. 103-110
Author(s):  
Phillip Kleespies ◽  
Morton Wiener

This study explored (1) for evidence of visual input at so-called “subliminal” exposure durations, and (2) whether the response, if any, was a function of the thematic content of the stimulus. Thematic content (threatening versus non-threatening) and stimulus structure (angular versus curved) were varied independently under “subliminal,” “part-cue,” and “identification” exposure conditions. With Ss' reports and the frequency and latency of first eye movements (“orienting reflex”) as input indicators, there was no evidence of input differences which are a function of thematic content at any exposure duration, and the “report” data were consistent with the eye-movement data.


Author(s):  
Gavindya Jayawardena ◽  
Sampath Jayarathna

Eye-tracking experiments involve areas of interest (AOIs) for the analysis of eye gaze data. While there are tools to delineate AOIs to extract eye movement data, they may require users to manually draw boundaries of AOIs on eye tracking stimuli or use markers to define AOIs. This paper introduces two novel techniques to dynamically filter eye movement data from AOIs for the analysis of eye metrics from multiple levels of granularity. The authors incorporate pre-trained object detectors and object instance segmentation models for offline detection of dynamic AOIs in video streams. This research presents the implementation and evaluation of object detectors and object instance segmentation models to find the best model to be integrated in a real-time eye movement analysis pipeline. The authors filter gaze data that falls within the polygonal boundaries of detected dynamic AOIs and apply object detector to find bounding-boxes in a public dataset. The results indicate that the dynamic AOIs generated by object detectors capture 60% of eye movements & object instance segmentation models capture 30% of eye movements.


Author(s):  
Hayward J. Godwin ◽  
Michael C. Hout ◽  
Katrín J. Alexdóttir ◽  
Stephen C. Walenchok ◽  
Anthony S. Barnhart

AbstractExamining eye-movement behavior during visual search is an increasingly popular approach for gaining insights into the moment-to-moment processing that takes place when we look for targets in our environment. In this tutorial review, we describe a set of pitfalls and considerations that are important for researchers – both experienced and new to the field – when engaging in eye-movement and visual search experiments. We walk the reader through the research cycle of a visual search and eye-movement experiment, from choosing the right predictions, through to data collection, reporting of methodology, analytic approaches, the different dependent variables to analyze, and drawing conclusions from patterns of results. Overall, our hope is that this review can serve as a guide, a talking point, a reflection on the practices and potential problems with the current literature on this topic, and ultimately a first step towards standardizing research practices in the field.


2008 ◽  
Vol 3 (2) ◽  
pp. 149-175 ◽  
Author(s):  
Ian Cunnings ◽  
Harald Clahsen

The avoidance of regular but not irregular plurals inside compounds (e.g., *rats eater vs. mice eater) has been one of the most widely studied morphological phenomena in the psycholinguistics literature. To examine whether the constraints that are responsible for this contrast have any general significance beyond compounding, we investigated derived word forms containing regular and irregular plurals in two experiments. Experiment 1 was an offline acceptability judgment task, and Experiment 2 measured eye movements during reading derived words containing regular and irregular plurals and uninflected base nouns. The results from both experiments show that the constraint against regular plurals inside compounds generalizes to derived words. We argue that this constraint cannot be reduced to phonological properties, but is instead morphological in nature. The eye-movement data provide detailed information on the time-course of processing derived word forms indicating that early stages of processing are affected by a general constraint that disallows inflected words from feeding derivational processes, and that the more specific constraint against regular plurals comes in at a subsequent later stage of processing. We argue that these results are consistent with stage-based models of language processing.


Perception ◽  
1994 ◽  
Vol 23 (1) ◽  
pp. 45-64 ◽  
Author(s):  
Monica Biscaldi ◽  
Burkhart Fischer ◽  
Franz Aiple

Twenty-four children made saccades in five noncognitive tasks. Two standard tasks required saccades to a single target presented randomly 4 deg to the right or left of a fixation point. Three other tasks required sequential saccades from the left to the right. 75 parameters of the eye-movement data were collected for each child. On the basis of their reading, writing, and other cognitive performances, twelve children were considered dyslexic and were divided into two groups (D1 and D2). Group statistical comparisons revealed significant differences between control and dyslexic subjects. In general, in the standard tasks the dyslexic subjects had poorer fixation quality, failed more often to hit the target at once, had smaller primary saccades, and had shorter reaction times to the left as compared with the control group. The control group and group D1 dyslexics showed an asymmetrical distribution of reaction times, but in opposite directions. Group D2 dyslexics made more anticipatory and express saccades, they undershot the target more often in comparison with the control group, and almost never overshot it. In the sequential tasks group D1 subjects made fewer and larger saccades in a shorter time and group D2 subjects had shorter fixation durations than the subjects of the control group.


1979 ◽  
Vol 11 (4) ◽  
pp. 319-328 ◽  
Author(s):  
Lester A. Lefton ◽  
Richard J. Nagle ◽  
Gwendolyn Johnson ◽  
Dennis F. Fisher

While reading text, the eye movements of good and poor reading fifth graders, third graders and adults were assessed. Subjects were tested in two sessions one year apart. Dependent variables included the duration and frequency of forward going fixations and regressions; an analysis of individual differences was also made. Results showed that poor reading fifth graders have relatively unsystematic eye movement behavior with many more fixations of longer duration than other fifth graders and adults. The eye movements of poor readers are quantitatively and qualitatively different than those of normal readers.


Sign in / Sign up

Export Citation Format

Share Document