Conservation agriculture for climate smart agriculture in smallholder farming systems in Kenya.

2022 ◽  
pp. 431-442
Author(s):  
Alfred Micheni ◽  
Patrick Gicheru ◽  
Onesmus Kitonyo

Abstract Climate change is any significant change in climatic conditions. Such changes may negatively affect productivity of the rain-fed agriculture practised by over 75% of the smallholder Kenyan farmers. The effect leads to failure to sustainably provide adequate food and revenue to famers. It is on this basis that an almost 8-year field study was conducted to evaluate and scale climate resilient agricultural technological options associated with Conservation Agriculture (CA) systems and practices (no-till; maintenance of permanent soil cover; and crop diversification - rotations and associations), complemented with good agricultural strategies. The activities involved were targeted to sustainably increase productivity of maize-legumes farming systems while reducing environmental risks. The results showed improved soil properties (physical, chemical and health) and consequently increased crop yields and human nutrition by over 30%. Such benefits were attributed to cost savings arising from NT and reduced labour requirement for weed control. This was further based on enhanced crop soil moisture and nutrients availability and use efficiency leading to over 25% yield increase advantage. Apart from the field trials, the study used the Agricultural Production Simulator (APSIM) computer model to simulate CA scenario with the aim of providing potential quick answers to adopting CA practices for farm system productivity. The results were inclusively shared, leading to over 21% increase in the number of farmers adopting the CA practices within and beyond the project sites. The study's overall recommendation affirmed the need to integrate the CA practices into Kenyan farming systems for sustainable agricultural livelihoods and economic opportunities.

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 192
Author(s):  
Gebeyanesh Zerssa ◽  
Debela Feyssa ◽  
Dong-Gill Kim ◽  
Bettina Eichler-Löbermann

Agriculture is the backbone of the Ethiopian economy, and the agricultural sector is dominated by smallholder farming systems. The farming systems are facing constraints such as small land size, lack of resources, and increasing degradation of soil quality that hamper sustainable crop production and food security. The effects of climate change (e.g., frequent occurrence of extreme weather events) exacerbate these problems. Applying appropriate technologies like climate-smart agriculture (CSA) can help to resolve the constraints of smallholder farming systems. This paper provides a comprehensive overview regarding opportunities and challenges of traditional and newly developed CSA practices in Ethiopia, such as integrated soil fertility management, water harvesting, and agroforestry. These practices are commonly related to drought resilience, stability of crop yields, carbon sequestration, greenhouse gas mitigation, and higher household income. However, the adoption of the practices by smallholder farmers is often limited, mainly due to shortage of cropland, land tenure issues, lack of adequate knowledge about CSA, slow return on investments, and insufficient policy and implementation schemes. It is suggested that additional measures be developed and made available to help CSA practices become more prevalent in smallholder farming systems. The measures should include the utilization of degraded and marginal lands, improvement of the soil organic matter management, provision of capacity-building opportunities and financial support, as well as the development of specific policies for smallholder farming.


2020 ◽  
Vol 18 ◽  
pp. 00002
Author(s):  
Vladimir Badenko ◽  
Alexander Fedotov ◽  
Alexander Tarakanov ◽  
Anton Terentev ◽  
Rahul Dev Garg

In the context of changing political, socio-economic, natural and climatic conditions, there is a need for effective tools to manage agricultural activities. Such tools are digital farming systems, which are a set of interconnected agrotechnical, reclamation and organizational measures aimed at the effective use of agricultural landscapes, preservation and improvement of soil fertility, and obtaining high crop yields. The paper describes the basics of development of scientific support and a prototype of the multilevel information resource system for creating digital farming systems.


2021 ◽  
Vol 3 ◽  
Author(s):  
Hambulo Ngoma ◽  
Arild Angelsen ◽  
Thomas S. Jayne ◽  
Antony Chapoto

Conservation Agriculture (CA) aims to concurrently promote agricultural productivity, local livelihoods, climate resilience and other environmental objectives. We review the emerging evidence base in Eastern and Southern Africa to address whether CA is climate smart and why adoption rates by smallholders remain generally very low. We first develop an adoption framework that can be used to assess when and where the different components of CA are expected to be adopted under different conditioning factors and consider options to make CA climate smart. Our results suggest that CA can contribute positively to productivity and adaptation/resilience objectives, although the degree of success varies considerably by farm, household and regional characteristics. Overall, we find that capital-intensive (mechanized) CA is more likely to be adopted in areas of economic dynamism where capital is cheap relative to labor. Labor-intensive CA practices are more likely to be adopted in regions of economic stagnation where capital is expensive, and labor is abundant and cheap. A subnational focus is needed to identify economic conditions of different regions and agro-ecological zones and to test hypotheses derived from the framework in this paper and to propose the most appropriate CA packages for promotion. Our findings suggest that labor using variants of CA such as planting basins are more likely to be adopted than are capital using mechanized options in densely populated parts of Malawi, Ethiopia, Kenya, Tanzania, Zambia and Zimbabwe where labor is abundant, and presumably cheap, but capital is expensive. However, rising land scarcity (prices) and wages in the region present an opportunity for capital intensive, mechanized CA operations to be adopted if the cost of capital can be kept low and if there is a supportive environment for mechanization. We conclude that CA is climate smart and if adopted widely, it has the potential to help build resilience in smallholder farming systems. CA can be more climate smart, and its uptake can be enhanced by reframing, better targeting, adapting CA to location-specific economic and biophysical, and through greater and more effective public spending on agricultural research and development.


2022 ◽  
pp. 66-84
Author(s):  
Emilio J. González-Sánchez ◽  
Manuel Moreno-Garcia ◽  
Amir Kassam ◽  
Saidi Mkomwa ◽  
Julio Roman-Vazquez ◽  
...  

Abstract To achieve the challenges raised in Agenda 2063 and the Malabo Declaration, new agricultural techniques need to be promoted. Practical approaches to implement climate smart agriculture and sustainable agriculture, able to deliver at field level, are required. These include sustainable soil and land management that allows different user groups to manage their resources, including water, crops, livestock and associated biodiversity, in ways that are best suited to the prevailing biophysical, socio-economic and climatic conditions. The adoption of locally adapted sustainable soil management practices is needed to support climate change mitigation and adaptation from the agricultural perspective. In this sense, Conservation Agriculture (CA) can be adapted to local conditions, and help achieve the key objectives. The application of CA principles brings multiple benefits, especially in terms of soil conservation, but also for mitigating climate change. In fact, CA has the ability to transform agricultural soils from being carbon emitters into carbon sinks, because of no-tillage (NT) techniques and the return to the soil of diverse crop biomass from above-ground parts of plants and from diverse roots systems and root exudates. Similarly, fossil energy use decreases due to the reduction in agricultural operations, and so less CO2 is emitted to the atmosphere. Lower greenhouse gas (GHG) emissions in CA also result, because of reduced and more efficient use of inputs. Scientific studies confirm the sequestration potential of increased soil organic carbon (SOC) stocks on croplands in Africa on each of the continent's major bioclimatic areas. Coefficients of SOC sequestration for Africa are presented in this chapter.


2011 ◽  
Vol 124 (3) ◽  
pp. 468-472 ◽  
Author(s):  
Ken E. Giller ◽  
Marc Corbeels ◽  
Justice Nyamangara ◽  
Bernard Triomphe ◽  
Francois Affholder ◽  
...  

2022 ◽  
pp. 345-360
Author(s):  
Erna Kruger ◽  
Hendrik Smith ◽  
Phumzile Ngcobo ◽  
Mazwi Dlamini ◽  
Temakholo Mathebula

Abstract Introduction of Conservation Agriculture (CA) and associated climate-resilient agriculture practices within an innovation system approach, and using farmer-level experimentation and learning groups as the primary learning and social empowerment processes, has created a sustainable and expanding farming alternative for smallholders that is improving their resilience to climate change substantially. Through a knowledge co-creation process, smallholder farmers in the programme have adapted and incorporated a wide range of practices into their farming system, including minimum soil disturbance, close spacing, improved varieties, judicious use of fertilizer, pesticides and herbicides, crop diversification, intercropping and crop rotation as well as fodder production and livestock integration. They have organized themselves into learning groups, local savings and loan associations, water committees, farmer centres and cooperatives and in so doing have created innovation platforms for local value chain development. They have built ongoing relationships with other smallholders, NGOs, academic institutions, government extension services and agribusiness suppliers, and have promoted CA tirelessly within their local communities and social networks. To date, this is the most successful model for implementation of CA in smallholder farming in South Africa and, through networking and upscaling activities, is being promoted nationally as a strategic approach to smallholder adaptation and mitigation programming, in line with the Africa climate smart agriculture (CSA) Vision 25×25 (NEPAD, Malabo, June 2014).


2017 ◽  
Vol 155 (8) ◽  
pp. 1324-1331 ◽  
Author(s):  
B. R. MURPHY ◽  
T. R. HODKINSON ◽  
F. M. DOOHAN

SUMMARYThe use of chemicals to fertilize crops incurs economic and environmental costs and it is widely recognized that the current level of chemical fertilizer use is unsustainable in many intensive farming systems. Any methods that can reduce fertilizer input and still maintain acceptable yields would be of great benefit to both the farmer and the environment. The use of beneficial endophytes as crop inoculants may go some way towards improving crop yields beyond that achievable using fertilizer increases alone. Field trials were conducted over two seasons on three contrasting field sites to test the effects of fungal endophytes from a wild barley relative on three barley cultivars (Mickle, Planet and Propino). Seeds were either untreated or dressed with a consortium of four endophyte strains, and three levels of nitrogen (N) were applied to both treatments: full N, 50% N and 0 N. On the field site with the lowest overall N input, the endophyte treatment with 50% N restored yield for ‘Planet’ to that associated with untreated plants receiving the full N input. On the same site and with the same cultivar, endophyte treatment increased yield by 15% under full N, and by a mean 12% for all three cultivars with 50% N input. Over both seasons and all three sites, the endophyte treatment increased yield for the cultivar Planet by a mean of 9%. For the endophyte-associated increase in the variety Planet grain yield over the untreated trials strong correlations were found between increased yield and each of low rainfall, greater evaporation and greater number of degree days above the base. Furthermore, the efficacy of the endophytes was not removed by regular foliar fungicidal treatment. These results suggest that fungal endophytes can contribute to improving barley yield grown in low rainfall areas and under a range of fertilizer input regimes, provided that endophyte treatments are applied to compatible crop cultivars and sites.


Sign in / Sign up

Export Citation Format

Share Document