Climate smart agriculture for Africa: the potential role of conservation agriculture in climate smart agriculture.

2022 ◽  
pp. 66-84
Author(s):  
Emilio J. González-Sánchez ◽  
Manuel Moreno-Garcia ◽  
Amir Kassam ◽  
Saidi Mkomwa ◽  
Julio Roman-Vazquez ◽  
...  

Abstract To achieve the challenges raised in Agenda 2063 and the Malabo Declaration, new agricultural techniques need to be promoted. Practical approaches to implement climate smart agriculture and sustainable agriculture, able to deliver at field level, are required. These include sustainable soil and land management that allows different user groups to manage their resources, including water, crops, livestock and associated biodiversity, in ways that are best suited to the prevailing biophysical, socio-economic and climatic conditions. The adoption of locally adapted sustainable soil management practices is needed to support climate change mitigation and adaptation from the agricultural perspective. In this sense, Conservation Agriculture (CA) can be adapted to local conditions, and help achieve the key objectives. The application of CA principles brings multiple benefits, especially in terms of soil conservation, but also for mitigating climate change. In fact, CA has the ability to transform agricultural soils from being carbon emitters into carbon sinks, because of no-tillage (NT) techniques and the return to the soil of diverse crop biomass from above-ground parts of plants and from diverse roots systems and root exudates. Similarly, fossil energy use decreases due to the reduction in agricultural operations, and so less CO2 is emitted to the atmosphere. Lower greenhouse gas (GHG) emissions in CA also result, because of reduced and more efficient use of inputs. Scientific studies confirm the sequestration potential of increased soil organic carbon (SOC) stocks on croplands in Africa on each of the continent's major bioclimatic areas. Coefficients of SOC sequestration for Africa are presented in this chapter.

The built environment with its high energy consumption and carbon emissions during the building life cycle has played a significant role in environmental degradation and global warming. Today the built environment accounts for more than half of global energy use and more than one-third of greenhouse gas emissions in the developed and developing world. New concepts of multidisciplinary design must be generated to develop a climate-responsive and energy-efficient built environment which adapts to the changing environmental conditions and mitigates the causes of the rapid change. By doing so, the building sector can drastically reduce its GHG emissions. Moreover, buildings can also adapt to the constant changes in the environment using emerging technologies such as the use of dynamic climate adaptive building envelopes. This paper presents an overview of climate change theory and its relationship to the built environment and novel methods of mitigation and adaptation.


2018 ◽  
Vol 9 (4) ◽  
pp. 633-642 ◽  
Author(s):  
G. Montanaro ◽  
V. Nuzzo ◽  
C. Xiloyannis ◽  
B. Dichio

Abstract Agriculture might serve as a mitigation solution through carbon (C) sequestration in soil, in tree biomass and reducing greenhouse gas (GHG) emissions. Increased C is beneficial for some soil structures and functions, improving the use of water and in turn the crop adaptation. This study reports on the synergy between mitigation and adaptation in agriculture through the paradigm of the olive (Olea europaea). Through data on net ecosystem productivity and soil respiration, the role of olive groves to store C in tree biomass (from 0.36 to 2.78 t CO2 ha−1 yr−1) and into soil (∼8.5 t CO2 ha−1 yr−1) is reviewed. The influence of some management practices on that role is also discussed. The overall climatic impact of olive fruit and oil production has been evaluated also considering GHG emissions by field operations (e.g., pruning, mulching of cover crop, fertilization, harvest, etc.) and by the extraction and bottling of oil. Soil C as interface between climate change mitigation and adaptation has been delineated, linking C-induced improvements in soil properties to increased water storage and reduced run-off and erosion. The outcomes may strengthen the environmental role of agriculture and promote synergistic mitigation and adaptation policies assisting in soil and water resources conservation.


Author(s):  
Abdissa Bekele ◽  
◽  
Abdissa Abebe ◽  

Conservation agriculture has been considered as the potential not only to increase the sustainability of agricultural productivity, but also to help works toward mitigation and adaption of climate change. Farming and soil management practices included in conservation agriculture are based on three core principles, which must be fulfilled concomitantly Minimum soil disturbance, Maintenance of permanent soil covers and Cropping system diversity, crop rotations. The objective of this document is therefore to review the implementation status, opportunities, challenges and limitation of conservation agriculture practices in Ethiopia. Conservation agriculture has economic as well as climatic advantages. The soil conservation practices, including minimum or no tillage have long been practiced by farmers with different approaches or systems in Ethiopia, conservation agriculture and its associated package of best practices were introduced in 1998. Presence of traditional practices contributing for conservation agriculture principle and socioeconomic and extension facilities are some of factors affecting adoption of conservation agriculture in Ethiopia while, Climate change prevention activities and untapped opportunity for the wide-scale promotion are some opportunities for adoption of Conservation Agriculture in Ethiopia. The principal goal of climate smart agriculture is identified as food security and development, while productivity, adaptation, and mitigation are identified as the three interlinked pillars necessary for achieving this goal. Key challenge with mainstreaming conservation agriculture systems relate to problems with up-scaling which is largely due to the lack of knowledge, expertise, inputs (especially equipment and machinery), adequate financial resources and infrastructure, and poor policy support.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2001
Author(s):  
Sadam Hussain ◽  
Saddam Hussain ◽  
Ru Guo ◽  
Muhammad Sarwar ◽  
Xiaolong Ren ◽  
...  

Human efforts to produce more food for increasing populations leave marks on the environment. The use of conventional agricultural practices, including intensive tillage based on the removal of crop residue, has magnified soil erosion and soil degradation. In recent years, the progressive increase in the concentration of greenhouse gases (GHGs) has created global interest in identifying different sustainable strategies in order to reduce their concentration in the atmosphere. Carbon stored in soil is 2–4 times higher than that stored in the atmosphere and four times more when compared to carbon stored in the vegetation. The process of carbon sequestration (CS) involves transferring CO2 from the atmosphere into the soil or storage of other forms of carbon to either defer or mitigate global warming and avoid dangerous climate change. The present review discusses the potential of soils in sequestering carbon and mitigating the accelerated greenhouse effects by adopting different agricultural management practices. A significant amount of soil organic carbon (SOC) could be sequestered by conversion of conventional tillage to conservation tillage. The most important aspect of conservation agriculture is thought to improve plant growth and soil health without damaging the environment. In the processes of climate change mitigation and adaptation, zero tillage has been found to be the most eco-friendly method among different tillage techniques. No-till practice is considered to enable sustainable cropping intensification to meet future agricultural demands. Although no-tillage suggests merely the absence of tillage, in reality, several components need to be applied to a conservation agriculture system to guarantee higher or equal yields and better environmental performance than conventional tillage systems.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1564
Author(s):  
Kofi Akamani

Although the transition to industrial agriculture in the 20th century resulted in increased agricultural productivity and efficiency, the attainment of global food security continues to be elusive. Current and anticipated impacts of climate change on the agricultural sector are likely to exacerbate the incidence of food insecurity. In recent years, climate-smart agriculture has gained recognition as a mechanism that has the potential to contribute to the attainment of food security and also enhance climate change mitigation and adaptation. However, several conceptual and implementation shortfalls have limited the widespread adoption of this innovative agricultural system at the landscape scale. This manuscript argues for the use of ecosystem management as an overarching framework for the conceptualization and implementation of climate-smart agriculture. The manuscript focuses on clarifying the foundational assumptions and management goals, as well as the knowledge and institutional requirements of climate-smart agriculture using the principles of ecosystem management. Potential challenges that may be faced by the application of an ecosystem management approach to climate-smart agriculture are also discussed. Furthermore, the manuscript calls for a heightened focus on social equity in the transition toward an ecosystem-based approach to climate-smart agriculture. The US farm bill is used as an illustrative case study along with other examples drawn mostly from sub-Saharan Africa.


2021 ◽  
Author(s):  
Darija Bilandžija ◽  
Marija Galić ◽  
Željka Zgorelec

<p>In order to mitigate climate change and reduce the anthropogenic greenhouse gas (GHG) emissions, the Kyoto protocol has been adopted in 1997 and the Paris Agreement entered into force in 2016. The Paris Agreement have ratified 190 out of 197 Parties of the United Nations Framework Convention on Climate Change (UNFCCC) and Croatia is one of them as well. Each Party has obliged regularly to submit the national inventory report (NIR) providing the information on the national anthropogenic GHG emissions by sources and removals by sinks to the UNFCCC. Reporting under the NIR is divided into six categories / sectors, and one of them is land use, land use change and forestry (LULUCF) sector, where an issue of uncertainty estimates on carbon emissions and removals occurs. As soil respiration represents the second-largest terrestrial carbon flux, the national studies on soil respiration can reduce the uncertainty and improve the estimation of country-level carbon fluxes. Due to the omission of national data, the members of the University of Zagreb Faculty of Agriculture, Department of General Agronomy have started to study soil respiration rates in 2012, and since then many different studies on soil respiration under different agricultural land uses (i.e. annual crops, energy crop and vineyard), management practices (i.e. tillage and fertilization) and climate conditions (i.e. continental and mediterranean) in Croatia have been conducted. The obtained site specific results on field measurements of soil carbon dioxide concentrations by <em>in situ</em> closed static chamber method will be presented in this paper.</p>


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2601
Author(s):  
Holger Rupp ◽  
Nadine Tauchnitz ◽  
Ralph Meissner

As a result of global climate change, heavy rainfall events and dry periods are increasingly occurring in Germany, with consequences for the water and solute balance of soils to be expected. The effects of climate change on nitrogen and carbon leaching were investigated using 21 non-weighable manually filled lysimeters of the UFZ lysimeter facility Falkenberg, which have been managed since 1991 according to the principles of the best management practices and organic farming. Based on a 29-year dataset (precipitation, evaporation, leachate, nitrate and dissolved organic carbon concentrations), the lysimeter years 1995/96, 2018/19, and 2003/04 were identified as extremely dry years. Under the climatic conditions in northeastern Germany, seepage fluxes were disrupted in these dry years. The reoccurrence of seepage was associated with exceptionally high nitrogen concentrations and leaching losses, which exceeded the current drinking water limits by many times and may result in a significant risk to water quality. In contrast, increased DOC leaching losses occurred primarily as a result of increased seepage fluxes.


Author(s):  
Never Mujere

Concerns of food and environmental security have increased enormously in recent years due to the vagaries of climate change and variability. Efforts to promote food security and environmental sustainability often reinforce each other and enable farmers to adapt to and mitigate the impact of climate change and other stresses. Some of these efforts are based on appropriate technologies and practices that restore natural ecosystems and improve the resilience of farming systems, thus enhancing food security. Climate smart agriculture (CSA) principles, for example, translate into a number of locally-devised and applied practices that work simultaneously through contextualised crop-soil-water-nutrient-pest-ecosystem management at a variety of scales. The purpose of this paper is to review concisely the current state-of-the-art literature and ascertain the potential of the Pfumvudza concept to enhance household food security, climate change mitigation and adaptation as it is promoted in Zimbabwe. The study relied heavily on data from print and electronic media. Datasets pertaining to carbon, nitrous oxide and methane storage in soils and crop yield under zero tillage and conventional tillage were compiled. Findings show that, compared to conventional farming, Pfumvudza has great potential to contribute towards household food security and reducing carbon emissions if implemented following the stipulated recommendations. These include among others, adequate land preparation and timely planting and acquiring inputs. However, nitrous oxide emissions tend to increase with reduced tillage and, the use of artificial fertilizers, pesticides and herbicides is environmentally unfriendly.


2022 ◽  
pp. 431-442
Author(s):  
Alfred Micheni ◽  
Patrick Gicheru ◽  
Onesmus Kitonyo

Abstract Climate change is any significant change in climatic conditions. Such changes may negatively affect productivity of the rain-fed agriculture practised by over 75% of the smallholder Kenyan farmers. The effect leads to failure to sustainably provide adequate food and revenue to famers. It is on this basis that an almost 8-year field study was conducted to evaluate and scale climate resilient agricultural technological options associated with Conservation Agriculture (CA) systems and practices (no-till; maintenance of permanent soil cover; and crop diversification - rotations and associations), complemented with good agricultural strategies. The activities involved were targeted to sustainably increase productivity of maize-legumes farming systems while reducing environmental risks. The results showed improved soil properties (physical, chemical and health) and consequently increased crop yields and human nutrition by over 30%. Such benefits were attributed to cost savings arising from NT and reduced labour requirement for weed control. This was further based on enhanced crop soil moisture and nutrients availability and use efficiency leading to over 25% yield increase advantage. Apart from the field trials, the study used the Agricultural Production Simulator (APSIM) computer model to simulate CA scenario with the aim of providing potential quick answers to adopting CA practices for farm system productivity. The results were inclusively shared, leading to over 21% increase in the number of farmers adopting the CA practices within and beyond the project sites. The study's overall recommendation affirmed the need to integrate the CA practices into Kenyan farming systems for sustainable agricultural livelihoods and economic opportunities.


2019 ◽  
Vol 11 (17) ◽  
pp. 4522 ◽  
Author(s):  
Magdalena Ruiz ◽  
Encarna Zambrana ◽  
Rosario Fite ◽  
Aida Sole ◽  
Jose Luis Tenorio ◽  
...  

The increasing spread of conservation agriculture demands that the next generation of wheat varieties includes cultivars capable of maintaining satisfactory yields with lower inputs and under uncertain climate scenarios. On the basis of the genetic gains achieved during decades of selection oriented to yield improvements under conventional crop management, it is important that novel breeding targets are defined and addressed. Grain yield, yield-related traits, and phenological and morphological characteristics, as well as functional quality parameters have been analyzed for six varieties each of bread and durum wheat, under minimum tillage and no-tillage. During the three-year experiment, the climatic conditions at the field trial site were characterized by low rainfall, although different degrees of aridity—from moderate to severe—were experienced. Differences were found between these two soil management practices in regard to the varieties’ yield stability. A positive influence of no-tillage on traits related to grain and biomass yield was also evidenced, and some traits among the examined seemed involved in varietal adaptation to a particular non-conventional tillage system. The study also confirmed some breeding targets for improved performance of wheat genotypes in conservation agroecosystems. These traits were represented in the small set of traditional varieties analysed.


Sign in / Sign up

Export Citation Format

Share Document