scholarly journals Somaclonal variation in clonal crops: containing the bad, exploring the good.

2021 ◽  
pp. 355-365
Author(s):  
Nicolas Roux ◽  
Rachel Chase ◽  
Ines van den Houwe ◽  
Chih-Ping Chao ◽  
Xavier Perrier ◽  
...  

Abstract Somaclonal variation describes random cellular changes in plants regenerated through tissue culture. It occurs in certain crops that undergo micropropagation and has been recorded in different explant sources, from leaves and shoots to meristems and embryos. In banana (Musa spp.), a clonal crop conserved in vitro, somaclonal variation has been observed after prolonged periods in tissue culture, resulting from an increase in subcultures performed on a given clone. According to scientific literature, variants, or off-types, often show characteristics such as abnormal growth and flower or fruit defects in frequencies ranging from 1% to 32%. This variation poses a problem for gene bank managers, whose mandate is to maintain the genetic integrity of their collections for research and breeding. In the case of the Bioversity International Musa Germplasm Transit Centre (ITC), stress during the in vitro process is minimized by various techniques and plants are regenerated after 10 years, making it a long and costly process. Identifying somaclonal variation at an early stage would be an ideal solution; however, this requires suitable molecular markers. Recent studies revealed that techniques such as direct DNA sequencing and single nucleotide polymorphisms (SNPs) are able to detect the underlying factors of somaclonal variation and are becoming more accessible. On the other hand, somaclonal variation can be beneficial as it allows the natural development of new varieties and supplies genetic stocks used for future genetic studies. Harnessing the diversity of somaclones is easier, faster and cheaper compared with other methods of crop improvement, although it is also less predictable. So far, variants of crops such as apple, strawberry, potato and banana have been successfully adopted into global markets. In this chapter, we will discuss how to minimize the adverse effects of somaclonal variation while maximizing its benefits for greater crop diversity, with a particular focus on banana.

2016 ◽  
Vol 2 (2) ◽  
pp. 81 ◽  
Author(s):  
Sri Hutami ◽  
Ika Mariska ◽  
Yati Supriati

<p class="p1">High genetic variability’s are important factors in the development of new crop varieties. <em>In vitro </em>techniques are applicable for development of crop variability that is not found in the gene pool. One of the <em>in vitro </em>techniques that can be used for this purpose is the somaclonal variation technique. Somaclonal variation may be derived from genetic variations in explants and genetic variations in tissue cultures. Variations in the explant may be obtained from cell mutations or polysomic mutations of a certain tissue. Genetic variations in tissue culture may be caused by ploidy of chromosomes (endomitosis fusion), changes of chromosom structures (crossings), as well as changes of genes and cytoplasms. Changes of genetic characters may be improved if anorganic compound was added into the medium. To improve the plant tolerances to biotic or abiotic factors, selection components may also be added to the medium. Research results showed that somaclonal variation in tissue culture can improve genetic variations in plants. The variation produced in tissue culture provide chances to develop new plant genotipes. Many selection components, such as Gamma-ray irradiation, Al contents and low pH, pure toxin or filtrate, polyethylene glycol (PEG), and plant growth regulators can be used to improve somaclonal variations in many plants to produce new genotipes.</p>


2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Kesiraju Karthik

Cotton (Gossypium spp.), is a mercantile crop plant is grown for its fluffy fiber and cotton seed oil in around 70 countries worldwide. Cotton is an economically important crop, shows erratic productivity under rain feed conditions; it is bogged down with many biotic and abiotic stresses. Due to lack of resistant germplasm, crop improvement through conventional breeding practices has been lagging. Genetic engineering offers numerous protocols to engineer plants to overcome stress. Biotechnological intervention for cotton improvement has begun three decades ago. The recalcitrance of cotton to tissue culture has been the major constraint for in vitro regeneration. Alternate methods that evade tissue culture regeneration steps have thus been envisaged. Till date there are very few standardized protocols that can be employed to develop transgenics in a genotype independent manner. Thus, genotype independent in planta transformation strategies have gained momentum in the present days, but reproducibility of reported protocols remains an amigna in many cases. In planta transformations holds prominence due to viability and ease in generation of transgenic cotton plants with in less time. This review focuses on grouping efforts made by different research groups in this senior. Several reports and standardizations have been focused that reports development of transgenic cotton.


1970 ◽  
Vol 18 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Zhao Guang-jie ◽  
Wang Zhan-bin ◽  
Wang Dan

Effects of different concentrations of 2-ip and IBA in WPM basal medium for Blomidon blueberry in vitro propagation and four different rooting agents at the early stage after transplantation showed that 15 mg/l of 2-ip is the best concentration to induce shoots. For optimum in vitro root formation 10 µM IBA was found to be best and four rooting agents for seedling transplantation according to their effects were No.2>, No.4>, No.3 >, water > and No. 1. Key words: Blomidon, Tissue culture, In vitro regeneration, Rooting agent D.O.I. 10.3329/ptcb.v18i2.3650 Plant Tissue Cult. & Biotech. 18(1): 187-195, 2008 (December)


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 872C-872
Author(s):  
G.R. de L. Fortes ◽  
A.M. R. Vieira ◽  
D.L. Leite

Somaclonal variation has been one way to create variants that could be used in the breeding programs. However, initial explants may not be useful if they show small leaves or nondeveloped stems. The aim of this work was to find a tissue culture medium so that potato shoots cultured in vitro could regenerate somatic material for use in trials aimed at somaclonal variation. Shoots of `Baronesa' and `Monte Bonito' were inoculated in media with or without activated charcoal (3.0 g–liter–1), BAP (1.0 g–liter–1), and different MS salt concentrations (50%, 75%, and 100%). After 30 days in controlled conditions (25C, 16-h photoperiod, and 2000 lux), BAP with activated charcoal improved the percentage of dry matter, and at higher MS salt concentrations, a better response was achieved for `Monte Bonito'. However, the presence of activated charcoal improved leaf development and stimulated higher shoot and bud formation, especially for `Monte Bonito'. This somatic material can be used to initiate callogenesis trials successfully.


2014 ◽  
Vol 112 (3) ◽  
pp. 749-754 ◽  
Author(s):  
Stephanie M. Reeve ◽  
Pablo Gainza ◽  
Kathleen M. Frey ◽  
Ivelin Georgiev ◽  
Bruce R. Donald ◽  
...  

Methods to accurately predict potential drug target mutations in response to early-stage leads could drive the design of more resilient first generation drug candidates. In this study, a structure-based protein design algorithm (K* in the OSPREY suite) was used to prospectively identify single-nucleotide polymorphisms that confer resistance to an experimental inhibitor effective against dihydrofolate reductase (DHFR) from Staphylococcus aureus. Four of the top-ranked mutations in DHFR were found to be catalytically competent and resistant to the inhibitor. Selection of resistant bacteria in vitro reveals that two of the predicted mutations arise in the background of a compensatory mutation. Using enzyme kinetics, microbiology, and crystal structures of the complexes, we determined the fitness of the mutant enzymes and strains, the structural basis of resistance, and the compensatory relationship of the mutations. To our knowledge, this work illustrates the first application of protein design algorithms to prospectively predict viable resistance mutations that arise in bacteria under antibiotic pressure.


2016 ◽  
Vol 8 (1) ◽  
pp. 38 ◽  
Author(s):  
Endang G. Lestari

<p>Mutation-based<br />plant improvement, which changes one or a few specific<br />traits of a cultivar, can contribute to crop improvement.<br />Tissue culture increases the efficiency of mutagenic<br />treatment to induce variations. In vitro culture in<br />combination with induced mutation can speed up the<br />breeding program by generating variability, followed by<br />selection and multiplication of the desired genotypes. In<br />many vegetative propagated crops, mutation induction in<br />combination with in vitro culture techniques can be the<br />most effective method for plant improvement. In seed<br />propagated species, the application of mutation coupled<br />with doubled haploid systems seems to be highly promising<br />in crop improvement. This approach speeds up the breeding<br />program through generation of variability followed by<br />selection of homozygousity and rapid multiplication of<br />desired genotypes.</p>


HortScience ◽  
2014 ◽  
Vol 49 (7) ◽  
pp. 949-954
Author(s):  
Fucheng Shan ◽  
Kevin Seaton

Rapid expansion of grapevine plantings in many parts of the world has led to increased demand for desirable planting stocks. In countries that rely on importing new varieties and have strict quarantine rules, such as Australia, vines need to stay under quarantine for ≈2 years before they are released, at which time there is very limited wood available. Hence, rapid expansion of propagating stock after release is the key to multiplying up new varieties. A novel method, referred to as Semi-sterilized Tissue Culture (SSTC) using immature single-node cuttings, was established and evaluated as a way of rapid expansion of grapevine (Vitis vinifera L.) planting stock. In the SSTC method, immature single-node cuttings were surface-sterilized using methylated spirits and then cultured in the root pulsing medium [1/2 Murashige and Skoog (MS) medium supplemented with 40 μM indole-3-butyric acid (IBA)] for 24 hours. They were then planted in sterilized aerobic rooting medium (sphagnum peat:coarse river sand:perlite = 0.5:1:2) and cultured in a tissue culture room for ≈4 weeks for root initiation and development. The rooted immature single-node cuttings were then transferred to normal propagation beds in a greenhouse and potted on for acclimatization. Tube stock generated by SSTC easily acclimatized with a 15 times higher root strike rate than cutting propagation. It also took at least 50% less time than fully sterilized micropropagation methods to produce planting stocks. The advantages of the SSTC method are that it can be conducted under semisterilized conditions, avoiding degeneration and bacterial contamination problems encountered in micropropagation methods. By removing the time-consuming steps of the explant establishment, proliferation, and maintenance in vitro, the propagation process was simplified compared with conventional sterile tissue culture procedures. The SSTC procedure removed the need for high operator skill levels, reducing expense and allowing easier commercial adoption.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1352 ◽  
Author(s):  
Margarita Pérez-Jiménez ◽  
Olaya Pérez-Tornero

Salinity is one of the major abiotic stresses affecting crops worldwide, and breeders are urged to evaluate new genotypes to know their degree of tolerance to this selective agent. However, obtaining a number of plants high enough to make the evaluation can prove to be a long and laborious process which could be overcome by using tissue culture techniques. In the present study, the reliability of tissue culture evaluations is called into question through two parallel experiments, in vitro and ex vitro, using Citrus macrophylla and four mutants thereof, previously selected by their different behavior to salinity, as a plant material. Plants were subjected to salinity for 8 weeks in both in vitro (80 mM NaCl) and ex vitro (100 mM NaCl) experiments, and differences with plants grown in control conditions without salt were analyzed. After the experiments, length, leaf damage, shoot dry weight, chlorophylls and ions were measured in both conditions and experiments. As a result, it was demonstrated that tissue culture is a reliable tool to determine whether a genotype is tolerant to salinity or not, since plants of the same genotype responded in a similar way to salinity in both experiments. Henceforth, in vitro evaluations can be employed to test genotypes in a very early stage and using very little time and space. However, genotypes that showed the biggest or lowest changes when cultured in salinity were not always the same in both experiments. Thus, only ex vitro experiments can be performed if the goal is to compare genotypes and see which genotype is the most or least resistant to salinity.


Sign in / Sign up

Export Citation Format

Share Document