Application of the SWAT model for ecohydrological modelling in Germany.

Author(s):  
M. Volk ◽  
N. Fohrer ◽  
B. Schmalz ◽  
A. Ullrich
Keyword(s):  
2013 ◽  
Vol 12 (11) ◽  
pp. 2249-2260 ◽  
Author(s):  
Kyoung Jae Lim ◽  
Jongpil Moon ◽  
Younghun Jung ◽  
Taesoo Lee ◽  
Tai-Cheol Kim ◽  
...  

2015 ◽  
Vol 48 (8) ◽  
pp. 647-657 ◽  
Author(s):  
Won Kwyang Jai ◽  
◽  
Sung Jang Hyun ◽  
Chung Eun-Sung
Keyword(s):  

2019 ◽  
Vol 11 (4) ◽  
pp. 992-1000
Author(s):  
Jirawat Supakosol ◽  
Kowit Boonrawd

Abstract The purpose of this study is to investigate the future runoff into the Nong Han Lake under the effects of climate change. The hydrological model Soil and Water Assessment Tool (SWAT) has been selected for this study. The calibration and validation were performed by comparing the simulated and observed runoff from gauging station KH90 for the period 2001–2003 and 2004–2005, respectively. Future climate projections were generated by Providing Regional Climates for Impacts Studies (PRECIS) under the A2 and B2 scenarios. The SWAT model yielded good results in comparison to the baseline; moreover, the results of the PRECIS model showed that both precipitations and temperatures increased. Consequently, the amount of runoff calculated by SWAT under the A2 and B2 scenarios was higher than that for the baseline. In addition, the amount of runoff calculated considering the A2 scenario was higher than that considering the B2 scenario, due to higher average annual precipitations in the former case. The methodology and results of this study constitute key information for stakeholders, especially for the development of effective water management systems in the lake, such as designing a rule curve to cope with any future incidents.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 860
Author(s):  
Nicu Constantin Tudose ◽  
Mirabela Marin ◽  
Sorin Cheval ◽  
Cezar Ungurean ◽  
Serban Octavian Davidescu ◽  
...  

This study aims to build and test the adaptability and reliability of the Soil and Water Assessment Tool hydrological model in a small mountain forested watershed. This ungauged watershed covers 184 km2 and supplies 90% of blue water for the Brașov metropolitan area, the second largest metropolitan area of Romania. After building a custom database at the forest management compartment level, the SWAT model was run. Further, using the SWAT-CUP software under the SUFI2 algorithm, we identified the most sensitive parameters required in the calibration and validation stage. Moreover, the sensitivity analysis revealed that the surface runoff is mainly influenced by soil, groundwater and vegetation condition parameters. The calibration was carried out for 2001‒2010, while the 1996‒1999 period was used for model validation. Both procedures have indicated satisfactory performance and a lower uncertainty of model results in replicating river discharge compared with observed discharge. This research demonstrates that the SWAT model can be applied in small ungauged watersheds after an appropriate parameterisation of its databases. Furthermore, this tool is appropriate to support decision-makers in conceiving sustainable watershed management. It also guides prioritising the most suitable measures to increase the river basin resilience and ensure the water demand under climate change.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2013 ◽  
Vol 726-731 ◽  
pp. 3792-3798
Author(s):  
Wen Ju Zhao ◽  
Wei Sun ◽  
Zong Li Li ◽  
Yan Wei Fan ◽  
Jian Shu Song ◽  
...  

SWAT (Soil and Water Assessment Tool) model is one of distributed hydrological model, based on spatial data offered by GIS and RS. This article mainly introduces the SWAT model principle, structure, and it is the application of stream flow simulation in China and other countries, then points out the deficiency existing in the process of model research. In order to service in water resources management work better, experts and scholars further research the rate constant and uncertainty of the simplification of the model parameters, and the combination of RS and GIS to use, and hydrological scale problems.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 650
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Excessive soil loss and sediment yield in the highlands of Ethiopia are the primary factors that accelerate the decline of land productivity, water resources, operation and function of existing water infrastructure, as well as soil and water management practices. This study was conducted at Finchaa catchment in the Upper Blue Nile basin of Ethiopia to estimate the rate of soil erosion and sediment loss and prioritize the most sensitive sub-watersheds using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated and validated using the observed streamflow and sediment data. The average annual sediment yield (SY) in Finchaa catchment for the period 1990–2015 was 36.47 ton ha−1 yr−1 with the annual yield varying from negligible to about 107.2 ton ha−1 yr−1. Five sub-basins which account for about 24.83% of the area were predicted to suffer severely from soil erosion risks, with SY in excess of 50 ton ha−1 yr−1. Only 15.05% of the area within the tolerable rate of loss (below 11 ton ha−1yr−1) was considered as the least prioritized areas for maintenance of crop production. Despite the reasonable reduction of sediment yields by the management scenarios, the reduction by contour farming, slope terracing, zero free grazing and reforestation were still above the tolerable soil loss. Vegetative contour strips and soil bund were significant in reducing SY below the tolerable soil loss, which is equivalent to 63.9% and 64.8% reduction, respectively. In general, effective and sustainable soil erosion management requires not only prioritizations of the erosion hotspots but also prioritizations of the most effective management practices. We believe that the results provided new and updated insights that enable a proactive approach to preserve the soil and reduce land degradation risks that could allow resource regeneration.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


Sign in / Sign up

Export Citation Format

Share Document