scholarly journals Comparison of body composition assessments by bioelectrical impedance and by anthropometry in premenopausal Chinese women

1993 ◽  
Vol 69 (3) ◽  
pp. 657-664 ◽  
Author(s):  
Frouwkje G. De Waart ◽  
Ruowei Li ◽  
Paul Deurenberg

Fat-free mass (FFM) was estimated in forty-seven premenopausal Chinese women, aged 18–43 years, from anthropometric data (skinfolds, body mass index (weight/height2; BMI)) or bioelectrical impedance, using several prediction formulas for body composition from the literature, and values compared with the mean of these three individual methods used as a frame of reference. In thirty-six women these values could be compared with FFM calculated from total body water (TBW) determined by D2O dilution. The prediction formulas used were developed from studies on Caucasian adults and their validity will have to be shown in populations with different ethnic backgrounds. The mean difference between FFM predicted from BMI and the frame of reference was 0.1 kg (95 % confidence interval (CI) -0.1, 0.4), from bioelectrical impedance it was 0.5 kg (95% CI 0.3, 0.7), and from skinfolds it was -0.6 kg (95% CI -0.9, -0.4). The mean difference between FFM calculated from TBW and the frame of reference was higher (2.2 kg, 95 % CI 1.2,3.3). The results of the present study indicate that the three methods may be valid for predicting body composition in adult Chinese females, but further research is needed on development and cross-validation of prediction equations for body composition for Chinese.

2020 ◽  
pp. 1-6
Author(s):  
Gabriela Salazar ◽  
Barbara Leyton ◽  
Carolina Aguirre ◽  
Alyerina Anziani ◽  
Gerardo Weisstaub ◽  
...  

Abstract Assessing children’s growth adequately is important due to the necessary prevention of adequate body composition, especially at pre-pubertal age. Simpler measurements such as anthropometry or bioimpedance, using equations validated in Caucasian children, have been demonstrated to overestimate or underestimate fat mass percentage (FM%) or fat-free mass (FFM) in Chilean children. In a sample of 424 children (198 boys and 226 girls) of 7–9 years old, the three component (3C) model was assessed, where total body water was determined by 2H dilution and body volume by air displacement plethysmography, in order to design and validate anthropometry and bioimpedance equations. The FM (%) equation specific for Chilean children was validated as (1·743 × BMI z-score) + (0·727 × triceps skinfold) + (0·385 × biceps skinfold) + 15·985, against the 3C model (R2 0·79). The new FFM equation (kg) generated was (log FFM = (0·018 × age) + (0·047 × sex) + (0·006 × weight) + (0·027 × resistance) + 2·071), with an R2 0·93 (female = 1 and male = 2). The Bland–Altman analysis shows a mean difference of 0·27 (sd 3·5) for the FM% in the whole group as well as 0·004 (sd 0·9) kg is the mean difference for the bioelectrical impedance analysis (BIA) FFM (kg) equation. The new equations for FM (%) and FFM (kg) in Chilean children will provide a simple and valid tool for the assessment of body composition in cohort studies or to assess the impact of nutritional programmes or public policies.


Author(s):  
Beatriz Rael ◽  
Nuria Romero-Parra ◽  
Víctor M. Alfaro-Magallanes ◽  
Laura Barba-Moreno ◽  
Rocío Cupeiro ◽  
...  

Purpose: The influence of female sex hormones on body fluid regulation and metabolism homeostasis has been widely studied. However, it remains unclear whether hormone fluctuations throughout the menstrual cycle (MC) and with oral contraceptive (OC) use affect body composition (BC). Thus, the aim of this study was to investigate BC over the MC and OC cycle in well-trained females. Methods: A total of 52 eumenorrheic and 33 monophasic OC-taking well-trained females participated in this study. Several BC variables were measured through bioelectrical impedance analysis 3 times in the eumenorrheic group (early follicular phase, late follicular phase, and midluteal phase) and on 2 occasions in the OC group (withdrawal phase and active pill phase). Results: Mixed linear model tests reported no significant differences in the BC variables (body weight, body mass index, basal metabolism, fat mass, fat-free mass, and total body water) between the MC phases or between the OC phases (P > .05 for all comparisons). Trivial and small effect sizes were found for all BC variables when comparing the MC phases in eumenorrheic females, as well as for the OC cycle phases. Conclusions: According to the results, sex hormone fluctuations throughout the menstrual and OC cycle do not influence BC variables measured by bioelectrical impedance in well-trained females. Therefore, it seems that bioimpedance analysis can be conducted at any moment of the cycle, both for eumenorrheic women and women using OC.


2021 ◽  
Author(s):  
Jaz Lyons-Reid ◽  
Leigh C Ward ◽  
Mya-Thway Tint ◽  
Timothy Kenealy ◽  
Keith M Godfrey ◽  
...  

Abstract Bioelectrical impedance techniques are easy to use and portable tools for assessing body composition. While measurements vary according to standing vs supine position in adults, and fasting and bladder voiding have been proposed as additional important influences, these have not been assessed in young children. Therefore, the influence of position, fasting, and voiding on bioimpedance measurements was examined in children. Bioimpedance measurements (ImpediMed SFB7) were made in 50 children (3.5 years). Measurements were made when supine and twice when standing (immediately on standing and after four minutes). Impedance and body composition were compared between positions, and the effect of fasting and voiding was assessed. Impedance varied between positions, but body composition parameters other than fat mass (total body water, intra- and extra-cellular water, fat-free mass) differed by less than 5%. There were no differences according to time of last meal or void. Equations were developed to allow standing measurements of fat mass to be combined with supine measurements. In early childhood, it can be difficult to meet requirements for fasting, voiding, and lying supine prior to measurement. This study provides evidence to enable standing and supine bioimpedance measurements to be combined in cohorts of young children.


Author(s):  
Ava Kerr ◽  
Gary Slater ◽  
Nuala Byrne ◽  
Janet Chaseling

The three-compartment (3-C) model of physique assessment (fat mass, fat-free mass, water) incorporates total body water (TBW) whereas the two-compartment model (2-C) assumes a TBW of 73.72%. Deuterium dilution (D2O) is the reference method for measuring TBW but is expensive and time consuming. Multifrequency bioelectrical impedance spectroscopy (BIS SFB7) estimates TBW instantaneously and claims high precision. Our aim was to compare SFB7 with D2O for estimating TBW in resistance trained males (BMI >25kg/m2). We included TBWBIS estimates in a 3-C model and contrasted this and the 2-C model against the reference 3-C model using TBWD2O. TBW of 29 males (32.4 ± 8.5 years; 183.4 ± 7.2 cm; 92.5 ± 9.9 kg; 27.5 ± 2.6 kg/m2) was measured using SFB7 and D2O. Body density was measured by BODPOD, with body composition calculated using the Siri equation. TBWBIS values were consistent with TBWD2O (SEE = 2.65L; TE = 2.6L) as were %BF values from the 3-C model (BODPOD + TBWBIS) with the 3-C reference model (SEE = 2.20%; TE = 2.20%). For subjects with TBW more than 1% from the assumed 73.72% (n = 16), %BF from the 2-C model differed significantly from the reference 3-C model (Slope 0.6888; Intercept 5.093). The BIS SFB7 measured TBW accurately compared with D2O. The 2C model with an assumed TBW of 73.72% introduces error in the estimation of body composition. We recommend TBW should be measured, either via the traditional D2O method or when resources are limited, with BIS, so that body composition estimates are enhanced. The BIS can be accurately used in 3C equations to better predict TBW and BF% in resistance trained males compared with a 2C model.


1997 ◽  
Vol 83 (3) ◽  
pp. 927-935 ◽  
Author(s):  
James N. Roemmich ◽  
Pamela A. Clark ◽  
Arthur Weltman ◽  
Alan D. Rogol

Roemmich, James N., Pamela A. Clark, Arthur Weltman, and Alan D. Rogol. Alterations in growth and body composition during puberty. I. Comparing multicompartment body composition models. J. Appl. Physiol. 83(3): 927–935, 1997.—A four-compartment (4C) model of body composition was used as a criterion to determine the accuracy of three-compartment (3C) and two-compartment (2C) models to estimate percent body fat (%BF) in prepubertal and pubertal boys (genital I & II, n = 17; genital III & IV, n = 7) and girls (breast I & II, n = 8; breast III & IV, n = 15). The 3C water-density (3C-H2O) and 3C mineral-density models, dual-energy X-ray absorptiometry, the Lohman age-adjusted equations, the Slaughter et al. skinfold equations, and the Houtkooper et al. and Boileau bioelectrical impedance equations were evaluated. Agreement with the 4C model increased with the number of compartments (i.e., body water, bone mineral) measured. Except for the 3C-H2O model, the limits of agreement were large and did not perform well for individuals. The mean %BF by dual-energy X-ray absorptiometry (23.6%) was greater than that of the criterion 4C method (21.7%). For the field methods, the Slaughter et al. skinfold equations performed better than did the Houtkooper et al. and Boileau bioimpedance equations. The hydration of the fat-free mass decreased (genital I & II = 75.7%, genital III & IV = 74.8%, breast I & II = 75.5%, breast III & IV = 74.4%) and the mineral content increased (genital I & II = 4.9%, genital III & IV = 5.0%, breast I & II = 5.1%, breast III & IV = 5.7%) with maturation. The density of the fat-free mass also increased (genital I & II = 1.084 g/ml, genital III & IV = 1.087 g/ml, breast I & II = 1.086 g/ml, breast III & IV = 1.091 g/ml) with maturation. All of the models reduced the %BF overprediction of the Siri 2C model, but only the 4C and 3C-H2O models should be used as criterion methods for body composition validation in children and adolescents.


1998 ◽  
Vol 32 (1) ◽  
pp. 65-71 ◽  
Author(s):  
K. Rutter ◽  
L. Hennoste ◽  
L. C. Ward ◽  
B. H. Cornish ◽  
B. J. Thomas

Bioelectrical impedance analysis (BIA) was used to assess body composition in rats fed on either standard laboratory diet or on a high-fat diet designed to induce obesity. Bioelectrical impedance analysis predictions of total body water and thus fat-free mass (FFM) for the group mean values were generally within 5% of the measured values by tritiated water (3H2O) dilution. The limits of agreement for the procedure were, however, large, approximately ±25%, limiting the applicability of the technique for measurement of body composition in individual animals.


2019 ◽  
Vol 9 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Simone De Leo ◽  
Carla Colombo ◽  
Marta Di Stefano ◽  
Antonella Dubini ◽  
Silvia Cozzi ◽  
...  

Weight loss is one of the most frequent adverse events during treatment with multikinase inhibitors, but scanty data are available on its extent and characteristics. This is the first assessment of the body composition by bioelectrical impedance analysis and of circulating leptin and ghrelin levels, in patients with advanced thyroid cancer before and at regular intervals during treatment with the tyrosine kinase inhibitor lenvatinib. Body mass index (BMI) decreased in all patients, with an average ∆ reduction of –6.4, –9.8, and –15.3% at 3, 6, and 12 months of treatment, respectively. Interestingly, in most patients, after the first year of treatment, BMI remained stable. In all patients, fat mass (FM) reduced more than fat-free mass, the highest decrement being of –60 and –16%, respectively. A decrease in the body cell mass, a parameter mainly due to muscle tissue, was observed only in patients with a vast baseline muscular mass. Total body water decreased in parallel to BMI. During treatment, leptin tightly paralleled the decrease of BMI values, consistent with the decrease in FM, whereas ghrelin levels increased upon BMI decrease. The loss of the FM accounts for the largest portion of BMI reduction during lenvatinib treatment. The increase in ghrelin could account for the BMI stabilization observed after 1 year of treatment. Nevertheless, oral nutritional supplements should be given as early as possible and athletic patients should be encouraged to maintain physical activity. In some circumstances, parenteral nutrition is required for the rehabilitation of these patients.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1689-1689
Author(s):  
Rawiwan Sirirat ◽  
Celine Heskey ◽  
Christine Wilson ◽  
Edward Bitok ◽  
Julie Jones ◽  
...  

Abstract Objectives The accurate measurement of body composition is important in both research and clinical practice. The aim of this study was to compare the InBody relative to the BOD POD®. The latter is widely recognized as one of the most accurate methods to measure human body composition. Methods In the context of a clinical trial of 35 free-living non-athletic individuals [80% F, ages 40–69 years, BMI 25–34 kg/m2], we compared body composition measurements utilizing Bioelectrical Impedance Analysis (BIA) and Air Displacement Plethysmography (ADP). ADP was conducted in a BOD POD® (Cosmed USA Inc., Concord, CA, USA) and BIA measured using InBody 570 (In Body, Cerritos, CA, USA). Body measurements included total body weight, fat mass and fat-free mass which were obtained in kilograms following manufacturer instructions. Spearman's rank (rs) and Pearson correlations (r) were used to evaluate the agreement between the two instruments. Results The BOD POD® and InBody measurements were strongly correlated. Correlation was strongest for total body weight (rs (35) = .99, P < .0001), followed by fat mass (r (35) = .93, P < .0001). The lowest correlation was observed for fat-free mass (rs (35) = .79, P < .0001). Conclusions The InBody 570 is reliable and compares favorably to the BOD POD®. Hence, it can be used in clinical settings and epidemiological studies as a practical and relatively inexpensive alternative to the BodPod and dual-energy x-ray absorptiometry (DEXA). Funding Sources Nutrition Research Center, School of Public Health, Loma Linda University, Loma Linda, CA, USA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaz Lyons-Reid ◽  
Leigh C. Ward ◽  
Mya-Thway Tint ◽  
Timothy Kenealy ◽  
Keith M. Godfrey ◽  
...  

AbstractBioelectrical impedance techniques are easy to use and portable tools for assessing body composition. While measurements vary according to standing vs supine position in adults, and fasting and bladder voiding have been proposed as additional important influences, these have not been assessed in young children. Therefore, the influence of position, fasting, and voiding on bioimpedance measurements was examined in children. Bioimpedance measurements (ImpediMed SFB7) were made in 50 children (3.38 years). Measurements were made when supine and twice when standing (immediately on standing and after four minutes). Impedance and body composition were compared between positions, and the effect of fasting and voiding was assessed. Impedance varied between positions, but body composition parameters other than fat mass (total body water, intra- and extra-cellular water, fat-free mass) differed by less than 5%. There were no differences according to time of last meal or void. Equations were developed to allow standing measurements of fat mass to be combined with supine measurements. In early childhood, it can be difficult to meet requirements for fasting, voiding, and lying supine prior to measurement. This study provides evidence to enable standing and supine bioimpedance measurements to be combined in cohorts of young children.


2020 ◽  
Vol 28 (4) ◽  
pp. 598-604
Author(s):  
Nathan F. Meier ◽  
Yang Bai ◽  
Chong Wang ◽  
Duck-chul Lee

Changes in body composition are related to mobility, fall risk, and mortality, especially in older adults. Various devices and methods exist to measure body composition, but bioelectrical impedance analysis (BIA) has several advantages. The purpose of this study was to validate a common BIA device with a dual-energy X-ray absorptiometer (DXA) in older adults and develop prediction equations to improve the accuracy of the BIA measurements. The participants were 277 older adults (162 women and 115 men; age 73.9 ± 5.8 years) without a history of cancer and without a history of severe medical or mental conditions. Individuals fasted 12 hr before BIA and DXA measurement. The correlations between the two methods for appendicular lean mass (ALM), fat-free mass (FFM), and percentage body fat (%BF) were .86, .93, and .92, respectively, adjusting for age and sex. The mean percentage error (DXA—InBody) and mean absolute percentage error were −12% and 13% for ALM, −13% and 13% for FFM, and 16% and 17% for %BF. The prediction equations estimated ALM, FFM, and %BF; sex was coded as 1 for male and 0 for female: Although highly correlated, BIA overestimated FFM, and ALM and underestimated %BF compared with DXA. An application of prediction equations eliminated the mean error and reduced the range of individual error across the sample. Prediction equations may improve BIA accuracy sufficiently to substitute for DXA in some cases.


Sign in / Sign up

Export Citation Format

Share Document