scholarly journals Effects of dietary conjugated linoleic acid on fatty acid composition and cholesterol content of hen egg yolks

2003 ◽  
Vol 90 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Beata Szymczyk ◽  
Paweł M. Pisulewski

The main objectives of the present study were to determine the effect of dietary conjugated linoleic acid (CLA) isomers on the fatty acid composition and cholesterol content of egg-yolk lipids. Forty-five 25-week-old laying hens were randomly distributed into five groups of nine hens each and maintained in individual laying cages, throughout 12 weeks of the experiment. They were assigned to the five treatments that consisted of commercial layer diets containing 0, 5, 10, 15 or 20g pure CLA/kg. Feed intake of hens varied little and insignificantly. Egg mass was uniformly lower (P<0·05) in the hens fed the CLA-enriched diets. Feed conversion efficiency, when expressed per kg eggs, was impaired (P<0·05), although without obvious relation to the dietary CLA concentration. Feeding the CLA-enriched diets resulted in gradually increasing deposition of CLA isomers (P<0·01) in egg-yolk lipids. Saturated fatty acids were increased (P<0·01) and monounsaturated fatty acids decreased (P<0·01). Polyunsaturated fatty acids (PUFA), when expressed as non-CLA PUFA, were also significantly decreased (P<0·01). The most striking effects (P<0·01) were observed for palmitic (16 : 0) and stearic (18 : 0) acids, which increased from 23·6 to 34% and from 7·8 to 18%, respectively. On the other hand, oleic acid (18 : 1n-9) decreased from 45·8 to 24·3%. Among non-CLA PUFA, linoleic (18 : 2n-6) and α-linolenic (18 : 3n-3) acids were strongly (P<0·01) decreased, from 14·2 to 7·7% and from 1·3 to 0·3%, respectively. The same was true for arachidonic (20:4n-6) and docosahexaenoic (22 : 6n-3) acids. The cholesterol content of egg yolks, when expressed in mg/g yolk, was not affected by the dietary CLA concentrations. In conclusion, unless the adverse effects of CLA feeding to laying hens on the fatty acid profile of egg yolks are eliminated, the CLA-enriched eggs cannot be considered functional food products.

2018 ◽  
Vol 98 (4) ◽  
pp. 732-740 ◽  
Author(s):  
H. Liu ◽  
F. Wu ◽  
L.L. Bai ◽  
Y.F. Chen ◽  
C.H. Lai ◽  
...  

This experiment was conducted to evaluate the effects of dietary conjugated linoleic acid (CLA) supplementation during late gestation on reproductive performance, colostrum yield, colostral fatty acid composition, and immunoglobulin G (IgG) concentrations in primiparous sows. Twenty-four primiparous Landrace × Large White pregnant sows were randomly selected and assigned to four dietary treatments: 0% (control), 0.75%, 1.50%, and 2.25% CLA supplementation from day 85 of gestation to parturition. During lactation, all sows were fed the same commercial diet. The preweaning mortality of suckling piglets born to dams fed supplemental CLA did decrease linearly (P = 0.01) during lactation. Administration of CLA during gestation increased linearly (P < 0.01) total saturated fatty acids and decreased linearly (P < 0.01) monounsaturated fatty acids and polyunsaturated fatty acids in colostrum. The concentrations of CLA isomers were higher (P < 0.01) in colostrum from primiparous sows fed CLA diets than in the control group. Feeding CLA increased (P < 0.05) colostral IgG concentrations, as well as that in the serum of neonatal piglets. In conclusion, 2.25% CLA supplementation in the diet of primiparous sows during late gestation could improve the passive immunity through colostral IgG and the survival of suckling piglets.


Author(s):  
Meltem Tufan ◽  
Hasan Rüştü Kutlu

Spirulina platensis is a photosynthetic, single-cell microalgae. Microalgae could be utilized for the production of several chemicals which are either unique to the algae or found at relatively high concentrations and command a high market value. In this respect, Spirulina is one of the more promising microalgae. It is especially rich, relative to other sources, in the polyunsaturated fatty acid γ-linolenic acid (GLA) and in pigments such as phycocyanin, myxoxanthophyl and zeaxanthin. Spirulina containing 5-6% total lipid ratio, 1.5-2% polyunsaturated fatty acids (PUFAs), contains 36% of α-linoleic acid as total PUFAs. It also contains precious fatty acids such as Linoleic Acid, Stearidonic Acid, Eicosapentaenoic Acid, Dodosahexaenoic Acid, Arachidonic Acid. The present study was conducted to evaluate whether dietary Spirulina would affect egg cholesterol level and fatty acid composition of ATAK-S. Seventy two similar weight layer hens at the 38 weeks age were randomly divided to four groups comprising 18 birds each. The hens were fed with standard layer diets containing %0, %0.5, %1, %2 Spirulina for 8 weeks. The hens were housed in individual cages. 16:8 hours light:dark photoperiod was employed. Feed and water were given ad libitum. Egg cholesterol was assessed by weekly and the fatty acid composition of the egg yolk was analyzed at the end of experimental period. The results showed that dietary supplemental Spirulina did not have significant effect on egg yolk cholesterol level, but the fatty acid composition is significant affected by the ratio of linolenic acids.


1972 ◽  
Vol 71 (1) ◽  
pp. 62-72 ◽  
Author(s):  
Knut Kirkeby

ABSTRACT The fatty acid composition of cholesterol esters, phospholipids, and triglycerides of the serum has been studied in groups of hyperthyroid and hypothyroid women and also in control material matched for age. In hyperthyroidism, a decrease in the proportions of linoleic acid and an increase in the proportions of some saturated and mono-unsaturated fatty acids were observed. When absolute concentrations were considered, it appeared that the decrease in linoleic acid was almost equivalent to the entire decrease in total fatty acids in the serum of the hyperthyroid patients. In hypothyroidism no changes were noted in the proportions of linoleic, saturated and mono-unsaturated fatty acids, and the absolute concentrations reflected the general increase in serum lipids. It is believed that these findings may be explained by the changes in lipid turnover which are known to occur in disturbances of thyroid function. In hyperthyroidism, they lead to a linoleic acid deficiency, while a sparing effect must be operating in hypothyroidism. The finding of relatively high linoleic acid values combined with hyperlipaemia in hypothyroidism seems to be characteristic of the condition, since other types of hyperlipaemia are almost invariably combined with low percentages of linoleic acid. Results regarding arachidonic and eicosatrienoic acid are consistent with increased synthesis in hyperthyroidism, and decreased synthesis in hypothyroidism.


Sign in / Sign up

Export Citation Format

Share Document