Brevicoryne brassicae (cabbage aphid).

Author(s):  
Mohammad Reza Nematollahi

Abstract Crops which can suffer severe attack by B. brassicae include cabbage, cauliflower, broccoli, radish, swede and mustard. Kale, oilseed rape and Brussels sprouts are usually only lightly infested, while turnips appear immune. Large colonies feed on the undersides of young leaves, draining plant nutritional resources, and on the flower heads of seed crops, reducing the setting of seed (Blackman and Eastop, 2000). On cabbage in Germany, numbers of aphids on the plants peaked in June-July and again in September-October. The yield was most affected by attack in the second population peak. Control thresholds for fresh consumption were 20% plants attacked with more than 10 apterae/plant, or 10% attacked plants when one or more plants had more than 100 aphids (Hildenhagen and Hommes, 1997).B. brassicae was very numerous on yellow mustard (Sinapis alba) in a study in Poland, in which early infestations (at the bud development stage) prevented stalk development and caused premature plant death; while later infestations (at the peak or end of blooming) caused high yield reductions (Hurej and Preiss, 1997). Among several aphids infesting brassica crops, B. brassicae was generally the most prevalent during the growing season (e.g. Trumble, 1982; Raworth, 1984; Nematollahi et al., 2014a). It occurred primarily on the highest and youngest leaves and stems, with the highest aphid density recorded at the head formation stage on broccoli and the stem elongation stage on oilseed rape (Trumble, 1982; Nematollahi et al., 2014a). B. brassicae significantly preferred the upper parts (upper 10-15 cm of the stem) of oilseed rape plants to the lower parts (the rest of the stem) (Nematollahi et al., 2014a).B. brassicae can sometimes reduce both crop yield and quality of spring and winter oilseed rape in Europe. In field experiments in the UK, yield responses to insecticide treatment tended to be larger in spring-sown than in winter-sown oilseed rape, mainly because it became more heavily infested at an early growth stage. B. brassicae is a sporadic oilseed rape pest, however, that will only rarely reach threshold numbers for control (Ellis et al., 1999). Daebeler and Hinz (1980) presented an analysis of yield loss in winter rape in Germany. They showed that by the time crops become heavily infested, serious injury will already have occurred, so control measures need to be taken early. Experimental studies showed that B. brassicae could reduce fresh and dry weight, leaf area and concentration of amino acid in aphid-infested plants (van Emden, 1990). B. brassicae hampers photosynthesis in a range of oilseed brassicas (Arjad Hussain et al., 2014; Razaq et al., 2014). In regions with warm climates, parthenogenetic reproduction can occur throughout the year. Considerable damage can occur to vegetables, particularly those grown for seed. In the Middle East, alatae migrate to cruciferous vegetable crops in autumn-early winter, migrating to wild Cruciferae in spring where they pass the summer. In Nigeria, cabbages with high uncontrolled infestations usually suffer stunted growth, plant death and low yields (Parh et al., 1987). In Himachal Pradesh, India, the avoidable yield losses caused by an aphid complex (B. brassicae, Lipaphis erysimi and Myzus persicae) to three different cruciferous oilseed crops, Brassica campestris var. toria, B. campestris var. sarson and B. juncea, were 67.61, 62.51 and 50.00%, respectively. Most of the losses occurred when the infestation was prevalent during the flowering stage. These losses were checked by insecticide applications at the initiation of flowering (Sharma and Kashyap, 1998). Late-season insect infestation of Brassica napus, B. rapa, B. juncea and Sinapis alba was studied in Idaho, USA. Aphid colonization (primarily B. brassicae) was observed on all these plant species, but infestation on S. alba and B. rapa occurred too late to have a major effect on seed yield. Seed oil content of rape species was significantly reduced by insect damage (B. brassicae, along with Ceutorhynchus assimilis and Plutella xylostella), although oil quality (indicated by fatty acid profile) was not affected. Uncontrolled insect infestation reduced seed yield of rape species by 37 and 32% in B. napus and B. rapa, respectively (Brown et al., 1999). B. brassicae is a vector of about 20 plant viruses, including Turnip mosaic virus (as cabbage black ringspot, cabbage ring necrosis and radish mosaic) and Cauliflower mosaic virus (Blackman and Eastop, 2000).

1999 ◽  
Vol 132 (3) ◽  
pp. 281-288 ◽  
Author(s):  
J. BROWN ◽  
J. P. McCAFFREY ◽  
B. L. HARMON ◽  
J. B. DAVIS ◽  
A. P. BROWN ◽  
...  

The effect of late season insect infestation on seed yield, yield components, oil content and oil quality of two canola species (Brassica napus L. and B. rapa L.) and two mustard species (B. juncea L. and Sinapis alba L.) was examined over 2 years. In each year, ten genotypes from each species were evaluated with late season insects controlled with either methyl parathion or endosulfan insecticides, and without insecticides. Major late season insect damage in 1992 was caused by cabbage seedpod weevil (Ceutorhynchus assimilis Paykull), while diamondback moth (Plutella xylostella L.) and aphids (primarily cabbage aphids, Brevicoryne brassicae L.) were major insect pests in 1993. Insecticide application was very effective in controlling diamondback moth larvae and adult cabbage seedpod weevils, but only partially effective in controlling aphids. Higher numbers of diamondback moth larvae were observed on mustard species compared to canola species. S. alba was completely resistant to cabbage seedpod weevil and there was no damage due to this pest observed. Aphid colonization was observed on plants from all species, but infestation on S. alba and B. rapa occurred too late to have a major effect on seed yield. Seed oil content of canola species was significantly reduced by insect damage although oil quality (indicated by fatty acid profile) was not affected by insect attack. Uncontrolled insect infestation reduced seed yield of canola species by 37 and 32% in B. napus and B. rapa, respectively. Least yield reduction occurred in S. alba, where average yield reduction from plants in untreated control plots was <10% of insecticide treated plants. S. alba, therefore, has good potential as an alternative crop suitable for northern Idaho because it can be grown with reduced late season insecticide application.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1922
Author(s):  
Ramila Mammadova ◽  
Immacolata Fiume ◽  
Ramesh Bokka ◽  
Veronika Kralj-Iglič ◽  
Darja Božič ◽  
...  

Plant-derived nanovesicles (NVs) have attracted interest due to their anti-inflammatory, anticancer and antioxidative properties and their efficient uptake by human intestinal epithelial cells. Previously we showed that tomato (Solanum lycopersicum L.) fruit is one of the interesting plant resources from which NVs can be obtained at a high yield. In the course of the isolation of NVs from different batches of tomatoes, using the established differential ultracentrifugation or size-exclusion chromatography methods, we occasionally observed the co-isolation of viral particles. Density gradient ultracentrifugation (gUC), using sucrose or iodixanol gradient materials, turned out to be efficient in the separation of NVs from the viral particles. We applied cryogenic transmission electron microscopy (cryo-TEM), scanning electron microscopy (SEM) for the morphological assessment and LC–MS/MS-based proteomics for the protein identification of the gradient fractions. Cryo-TEM showed that a low-density gUC fraction was enriched in membrane-enclosed NVs, while the high-density fractions were rich in rod-shaped objects. Mass spectrometry–based proteomic analysis identified capsid proteins of tomato brown rugose fruit virus, tomato mosaic virus and tomato mottle mosaic virus. In another batch of tomatoes, we isolated tomato spotted wilt virus, potato virus Y and southern tomato virus in the vesicle sample. Our results show the frequent co-isolation of plant viruses with NVs and the utility of the combination of cryo-TEM, SEM and proteomics in the detection of possible viral contamination.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anthony Gobert ◽  
Yifat Quan ◽  
Mathilde Arrivé ◽  
Florent Waltz ◽  
Nathalie Da Silva ◽  
...  

AbstractPlant viruses cause massive crop yield loss worldwide. Most plant viruses are RNA viruses, many of which contain a functional tRNA-like structure. RNase P has the enzymatic activity to catalyze the 5′ maturation of precursor tRNAs. It is also able to cleave tRNA-like structures. However, RNase P enzymes only accumulate in the nucleus, mitochondria, and chloroplasts rather than cytosol where virus replication takes place. Here, we report a biotechnology strategy based on the re-localization of plant protein-only RNase P to the cytosol (CytoRP) to target plant viruses tRNA-like structures and thus hamper virus replication. We demonstrate the cytosol localization of protein-only RNase P in Arabidopsis protoplasts. In addition, we provide in vitro evidences for CytoRP to cleave turnip yellow mosaic virus and oilseed rape mosaic virus. However, we observe varied in vivo results. The possible reasons have been discussed. Overall, the results provided here show the potential of using CytoRP for combating some plant viral diseases.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Peng Jin ◽  
Shiqi Gao ◽  
Long He ◽  
Miaoze Xu ◽  
Tianye Zhang ◽  
...  

Histone acetylation is a dynamic modification process co-regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although HDACs play vital roles in abiotic or biotic stress responses, their members in Triticumaestivum and their response to plant viruses remain unknown. Here, we identified and characterized 49 T. aestivumHDACs (TaHDACs) at the whole-genome level. Based on phylogenetic analyses, TaHDACs could be divided into 5 clades, and their protein spatial structure was integral and conserved. Chromosomal location and synteny analyses showed that TaHDACs were widely distributed on wheat chromosomes, and gene duplication has accelerated the TaHDAC gene family evolution. The cis-acting element analysis indicated that TaHDACs were involved in hormone response, light response, abiotic stress, growth, and development. Heatmaps analysis of RNA-sequencing data showed that TaHDAC genes were involved in biotic or abiotic stress response. Selected TaHDACs were differentially expressed in diverse tissues or under varying temperature conditions. All selected TaHDACs were significantly upregulated following infection with the barley stripe mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV), and wheat yellow mosaic virus (WYMV), suggesting their involvement in response to viral infections. Furthermore, TaSRT1-silenced contributed to increasing wheat resistance against CWMV infection. In summary, these findings could help deepen the understanding of the structure and characteristics of the HDAC gene family in wheat and lay the foundation for exploring the function of TaHDACs in plants resistant to viral infections.


2016 ◽  
Vol 118 (4) ◽  
pp. 655-665 ◽  
Author(s):  
C. L. Thomas ◽  
N. S. Graham ◽  
R. Hayden ◽  
M. C. Meacham ◽  
K. Neugebauer ◽  
...  

2017 ◽  
Vol 30 (8) ◽  
pp. 631-645 ◽  
Author(s):  
Ying Wen Huang ◽  
Chung Chi Hu ◽  
Ching Hsiu Tsai ◽  
Na Sheng Lin ◽  
Yau Heiu Hsu

Plant viruses may exhibit age-dependent tissue preference in their hosts but the underlying mechanisms are not well understood. In this study, we provide several lines of evidence to reveal the determining role of a protein of the Nicotiana benthamiana chloroplast Hsp70 (NbcpHsp70) family, NbcpHsp70-2, involved in the preference of Bamboo mosaic virus (BaMV) to infect older tissues. NbcpHsp70 family proteins were identified in complexes pulled down with BaMV replicase as the bait. Among the isoforms of NbcpHsp70, only the specific silencing of NbcpHsp70-2 resulted in the significant decrease of BaMV RNA in N. benthamiana protopalsts, indicating that NbcpHsp70-2 is involved in the efficient replication of BaMV RNA. We further identified the age-dependent import regulation signal contained in the transit peptide of NbcpHsp70-2. Deletion, overexpression, and substitution experiments revealed that the signal in the transit peptide of NbcpHsp70-2 is crucial for both the import of NbcpHsp70-2 into older chloroplasts and the preference of BaMV for infecting older leaves of N. benthamiana. Together, these data demonstrated that BaMV may exploit a cellular age-dependent transportation mechanism to target a suitable environment for viral replication.


2015 ◽  
Vol 28 (6) ◽  
pp. 675-688 ◽  
Author(s):  
Masayoshi Hashimoto ◽  
Ken Komatsu ◽  
Ryo Iwai ◽  
Takuya Keima ◽  
Kensaku Maejima ◽  
...  

Systemic necrosis is one of the most severe symptoms caused by plant RNA viruses. Recently, systemic necrosis has been suggested to have similar features to a defense response referred to as the hypersensitive response (HR), a form of programmed cell death. In virus-infected plant cells, host intracellular membrane structures are changed dramatically for more efficient viral replication. However, little is known about whether this replication-associated membrane modification is the cause of the symptoms. In this study, we identified an amino-terminal amphipathic helix of the helicase encoded by Radish mosaic virus (RaMV) (genus Comovirus) as an elicitor of cell death in RaMV-infected plants. Cell death caused by the amphipathic helix had features similar to HR, such as SGT1-dependence. Mutational analyses and inhibitor assays using cerulenin demonstrated that the amphipathic helix–induced cell death was tightly correlated with dramatic alterations in endoplasmic reticulum (ER) membrane structures. Furthermore, the cell death–inducing activity of the amphipathic helix was conserved in Cowpea mosaic virus (genus Comovirus) and Tobacco ringspot virus (genus Nepovirus), both of which are classified in the family Secoviridae. Together, these results indicate that ER membrane modification associated with viral intracellular replication may be recognized to prime defense responses against plant viruses.


Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1371-1374 ◽  
Author(s):  
Carmen Gispert ◽  
George N. Oldfield ◽  
Thomas M. Perring ◽  
Rebecca Creamer

Experiments were undertaken to elucidate the characteristics of the transmission of peach mosaic virus (PMV) by Eriophyes insidiosus. Transmission efficiency by single E. insidiosus was as high as 17%. The minimum inoculation access period was between 3 and 6 h. E. insidiosus acquired the virus after a minimum acquisition access period of 3 days. No latent period was demonstrated. While most plant viruses which are transmitted by eriophyid mites are transmitted in a persistent mode, our data are more consistent with a semipersistent model.


Sign in / Sign up

Export Citation Format

Share Document