Apiognomonia erythrostoma (cherry leaf scorch).

Author(s):  

Abstract A. erythrostoma is a perithecial ascomycete known primarily from Europe, although it has also been reported from eastern Asia. The early spotting of leaves and fruits of Prunus species, particularly cherry and apricot [Prunus armeniaca], can result in significant defoliation and loss of yield in certain years when weather conditions are favourable for infection by airborne ascospores. Although there is no record of introduction of the fungus to new areas, which would most likely require transport of trees still bearing infected leaves and fruit, some countries do list it as a quarantine pathogen.

2014 ◽  
Vol 11 (2) ◽  
pp. 120-124
Author(s):  
Ts Nansalmaa ◽  
L Otgonjargal ◽  
D Altantuya

Sheep, camel wool, and woolen products are the main livestock products in Mongolia that satisfy population need and contribute certain amount of export revenue from international market. There is loss of possibility to produce ecologically clean safe, warm products [4] as only 10% of total wool is being processed. We tried to convince audience that it is required to support wool processing industry by right policy hence in ordinary weather conditions livestock number/ and wool production/ increases constantly and there are favorable circumstances established to supply products to China, Korea, South Eastern Asia and Russia with the ongoing process of market extension. DOI: http://dx.doi.org/10.5564/mjas.v11i2.231 Mongolian Journal of Agricultural Sciences Vol.11(2) 2013 pp.120-124


Author(s):  
Gregory W. Characklis ◽  
Mackenzie J. Dilts ◽  
Otto D. Simmons ◽  
Leigh-Anne H. Krometis ◽  
Christina Likirdopulos ◽  
...  

2020 ◽  
pp. 67-78
Author(s):  
Nandan Kumar ◽  
Sainath Shrikant Pawaskar

Flash fire caused by electric arc is different than that caused by flammable liquids/fumes or combustible dusts. A suitable protective clothing for protection against electric arc-flash must be designed as per Indian weather conditions. Currently available garments are manufactured using two or three layers of woven/nonwoven combinations to achieve higher Hazard Risk Category (HRC) rating (level 3 and above). However, they are heavy and not comfortable to the end users. Savesplash® is a single layer inherent flame-retardant knitted fabric. Its arc rating was determined using ASTM standards. It achieved arc thermal performance value (ATPV) of 41 cal/cm2, breakopen threshold energy (E_BT) of 42 cal/cm2 and heat attenuation factor (HAF) of 94% when tested as per ASTM F1959/F1959M-14 which translated into an arc rating of 41 cal/cm2. This is equivalent to HRC level 4 ratings as per National Fire Protection Association’s NFPA 70E standard (USA). Further, cut and sewn gloves (HM-100) developed using Savesplash® fabric reinforced with leather on palm area achieved ATPV of 63 cal/cm2 and HAF of 94.5% when tested as per ASTM F2675/F2675M-13.


Author(s):  
Georgiy Gulyuk ◽  
Aleksey Ivanov ◽  
Yuri Yanko

Current situation and agricultural management on the non-black earth area of Russia arebeing gradually worsen by the negative natural factors such as a significant increase of weather based climatic abnormal risks, deterioration of agro-meliorative conditions of agricultural lands because of colonization by tree and shrubbery vegetation and secondary bog formation, hidden degradation of soil fertility. When combined with functional loss of ameliorative complex and meliorative systems amortization, regional agriculture adaptation possibilities were rapidly limited. Production shortfall due no abnormal weather conditions for particular field crops was 19…48% during last five years, level of business realization of bioclimatic potential on a field was decreased by 7…12%.The complete realization of regional agricultural adaptive potential to weather based climatic changes and limitation of greenhouse gases emissions is possible on a basis of regeneration ofalll functions and aspects of ameliorative complex management. Toward this goal the coordinated actions of federal and regional management of Agricultural Complex, Scientific and Educational institutions, project foundations and managers are needed in a relation to human resources, scientific and regulatory supply. Any incomplete treatment in these fields inherent in visual negative consequences for food security and social economic development of rural areas of non-black earth zones not only at the current historical moment, but in a future also. Fundamental influence of solving of these problems deserves to scientific supply of innovative ameliorative complex, renewal of which should be based on principals of resources and energy preservation, nature management, computerization and digitalization management. During a long term research it was established that increase of average vegetation period temperature by lоСhas increased productivity of winter wheat, barley and summer wheat in average on 0,7 tons per ha, winter wheat and oat on 0,4 tons per ha, potatoes – 8,2 tons per ha, edible roots-6,4 tons per ha, cabbage 9,8 tons per ha, dry basis of herbage of multi and one age grasses–0,5 and 0,7 tons per ha. Increase of СО2 Concentration from 0,35 to 0,45% during last twenty years contributed into grow of yield in regional agriculture which can be estimated as 0,3 tons per ha per measure; searching remedy for agroclimatical risks decreasing production became drainage and irrigation systems (decrease 3…5 times);new method of reclamation of abandoned areas with transformation of biomass of tree and shrubbery vegetation into biochar makes it possible to decrease СО2 emissions up to times and get an adverse balance of СО2;secondary reclamation of lands covered by trees and shrubbery on area of 22ha used for vegetables and area of 37ha used for forage crops could supply a farmer with work and revenue sufficient for maintenance of one child what is on the major facts of population declaim in rural areas.


2020 ◽  
Vol 0 (6) ◽  
pp. 13-19
Author(s):  
Guzel Gumerova ◽  
Georgiy Gulyuk ◽  
Dmitry Kucher ◽  
Anatoly Shuravilin ◽  
Elena Piven

Data of long-term researches (2015–2018) in southern forest-steppe zone of the Republic of Bashkortostan, is justified theoretically and experimentally the mode of irrigation of potatoes on leached chernozems of unsatisfactory, satisfactory and good ameliorative condition of irrigated lands. For the growing periods of potatoes with different heat and moisture supply, the number of watering, the timing of their implementation, irrigation and irrigation norms are established. On lands with unsatisfactory meliorative state the number of irrigation depending on weather conditions of potato vegetation period varied from 0 to 3 (1.5 on average) with average irrigation norm – 990 m3/ha. With satisfactory meliorative state of lands the number of irrigation on average increased from 0 to 4 (2.3 on average) with irrigation norm – 1305 m3/ha. On lands with good meliorative state the number of irrigation was the highest – from 1 to 5 (3 on average) with average irrigation irrigation norm is 1653 m3/ha. It was noted that in the dry periods of potato vegetation the greatest number of watering was carried out (3–5 watering), and in the wet periods (2017) watering was not carried out except for the area with a good reclamation state, where only one irrigation was carried out by the norm of 550 m3/ha. Water consumption of potato was studied in dynamics as a whole during the growing season and the months of the growing season depending on weather conditions of vegetation period and land reclamation condition of irrigated lands, as well as in the control (without irrigation). The lowest total water consumption was in the area without irrigation and averaged 226.8 mm. In irrigated areas, its values increased to 319-353.4 mm. The average daily water consumption varied from 2.12 to 3.3 mm. The highest rates of potato water consumption were observed in June and July, and the lowest – in May and August. In the total water consumption of potatoes on the site without irrigation, the largest share was occupied by atmospheric precipitation and in addition to them the arrival of moisture from the soil. Irrigation water was used in irrigated areas along with precipitation, the share of which was 30.2–46.1 %.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
IJE Manager

In the past century, fossil fuels have dominated energy supply in Indonesia. However, concerns over emissions are likely to change the future energy supply. As people become more conscious of environmental issues, alternatives for energy are sought to reduce the environmental impacts. These include renewable energy (RE) sources such as solar photovoltaic (PV) systems. However, most RE sources like solar PV are not available continuously since they depend on weather conditions, in addition to geographical location. Bali has a stable and long sunny day with 12 hours of daylight throughout the year and an average insolation of 5.3 kWh/m2 per day. This study looks at the potential for on-grid solar PV to decarbonize energy in Bali. A site selection methodology using GIS is applied to measure solar PV potential. Firstly, the study investigates the boundaries related to environmental acceptability and economic objectives for land use in Bali. Secondly, the potential of solar energy is estimated by defining the suitable areas, given the technical assumptions of solar PV. Finally, the study extends the analysis to calculate the reduction in emissions when the calculated potential is installed. Some technical factors, such as tilting solar, and intermittency throughout the day, are outside the scope of this study. Based on this model, Bali has an annual electricity potential for 32-53 TWh from solar PV using amorphous thin-film silicon as the cheapest option. This potential amount to three times the electricity supply for the island in 2024 which is estimated at 10 TWh. Bali has an excessive potential to support its own electricity demand with renewables, however, some limitations exist with some trade-offs to realize the idea. These results aim to build a developmental vision of solar PV systems in Bali based on available land and the region’s irradiation.


2020 ◽  
pp. 57-62
Author(s):  
Olga Yu. Kovalenko ◽  
Yulia A. Zhuravlyova

This work contains analysis of characteristics of automobile lamps by Philips, KOITO, ETI flip chip LEDs, Osram, General Electric (GE), Gtinthebox, OSLAMPledbulbs with H1, H4, H7, H11 caps: luminous flux, luminous efficacy, correlated colour temperature. Characteristics of the studied samples are analysed before the operation of the lamps. The analysis of the calculation results allows us to make a conclusion that the values of correlated colour temperature of halogen lamps are close to the parameters declared by manufacturers. The analysis of the study results has shown that, based on actual values of correlated colour temperature, it is not advisable to use LED lamps in unfavourable weather conditions (such as rain, fog, snow). The results of the study demonstrate that there is a slight dispersion of actual values of luminous flux of halogen lamps by different manufacturers. Maximum variation between values of luminous flux of different lamps does not exceed 14 %. The analysis of the measurement results has shown that actual values of luminous flux of all halogen lamps comply with the mandatory rules specified in the UN/ECE Regulation No. 37 and luminous flux of LED lamps exceeds maximum allowable value by more than 8 %. Luminous efficacy of LED lamps is higher than that of halogen lamps: more than 82 lm/W and lower power consumption. The results of the measurements have shown that power consumption of a LED automobile lamp is lower than that of similar halogen lamps by 3 times and their luminous efficacy is higher by 5 times.


2020 ◽  
Vol 80 (2) ◽  
pp. 133-146
Author(s):  
L Zhang ◽  
Z Zhang ◽  
J Cao ◽  
Y Luo ◽  
Z Li

Grain maize production exceeds the demand for grain maize in China. Methods for harvesting good-quality silage maize urgently need a theoretical basis and reference data in order to ensure its benefits to farmers. However, research on silage maize is limited, and very few studies have focused on its energetic value and quality. Here, we calibrated the CERES-Maize model for 24 cultivars with 93 field experiments and then performed a long-term (1980-2017) simulation to optimize genotype-environment-management (G-E-M) interactions in the 4 main agroecological zones across China. We found that CERES-Maize could reproduce the growth and development of maize well under various management and weather conditions with a phenology bias of <5 d and biomass relative root mean square error values of <5%. The simulated results showed that sowing long-growth-cycle cultivars approximately 10 d in advance could yield good-quality silage. The optimal sowing dates (from late May to July) and harvest dates (from early October to mid-November) gradually became later from north to south. A high-energy yield was expected when sowing at an early date and/or with late-maturing cultivars. We found that Northeast China and the North China Plain were potential silage maize growing areas, although these areas experienced a medium or even high frost risk. Southwestern maize experienced a low risk level, but the low soil fertility limited the attainable yield. The results of this paper provide information for designing an optimal G×E×M strategy to ensure silage maize production in the Chinese Maize Belt.


Sign in / Sign up

Export Citation Format

Share Document