Sonchus oleraceus (common sowthistle).

Author(s):  
Julissa Rojas-Sandoval ◽  
Pedro Acevedo-Rodríguez ◽  
A. I. Popay

Abstract S. oleraceus is a common seed crop contaminant and has been carried either deliberately or accidentally by humans to almost every corner of the earth, where it invades mainly open and disturbed areas. It grows in a wide variety of environments on a wide range of substrates - roadsides, cultivated land, gardens, construction sites, sand dunes, logged or burned areas, on walls, mountain slopes, and near water. Once introduced to a new area the plants spread quickly because they grow and flower quickly and produce copious wind- and bird-dispersed seeds that germinate quickly in large numbers. They invade many cropped areas, especially among vegetable and winter crops. They are almost perfect 'designer weeds'. Additionally, this species has small light seeds which are easily dispersed by wind and water.

2020 ◽  
Author(s):  
Julissa Rojas-Sandoval

Abstract Derris elliptica is a large and fast-growing climber that is cultivated primarily across tropical regions of the world for its roots, which are used as fish poison and as the source of the natural insecticide rotenone. This species is adapted to a wide range of climates and soil types and spreads sexually by seed and vegetatively by stem fragments. It has successfully escaped from cultivation to become naturalized principally in disturbed areas and secondary forests. D. elliptica often behaves as an aggressive weed and, once established, climbs over other trees and shrubs forming a dense canopy that smothers vegetation, fences, forests, pastures, plantations and cultivated land. D. elliptica is now listed as invasive in Fiji, French Polynesia, Hawaii, Palau, Japan and Cuba.


This volume vividly demonstrates the importance and increasing breadth of quantitative methods in the earth sciences. With contributions from an international cast of leading practitioners, chapters cover a wide range of state-of-the-art methods and applications, including computer modeling and mapping techniques. Many chapters also contain reviews and extensive bibliographies which serve to make this an invaluable introduction to the entire field. In addition to its detailed presentations, the book includes chapters on the history of geomathematics and on R.G.V. Eigen, the "father" of mathematical geology. Written to commemorate the 25th anniversary of the International Association for Mathematical Geology, the book will be sought after by both practitioners and researchers in all branches of geology.


Author(s):  
David Fisher

There are eight columns in the Periodic Table. The eighth column is comprised of the rare gases, so-called because they are the rarest elements on earth. They are also called the inert or noble gases because, like nobility, they do no work. They are colorless, odorless, invisible gases which do not react with anything, and were thought to be unimportant until the early 1960s. Starting in that era, David Fisher has spent roughly fifty years doing research on these gases, publishing nearly a hundred papers in the scientific journals, applying them to problems in geophysics and cosmochemistry, and learning how other scientists have utilized them to change our ideas about the universe, the sun, and our own planet. Much Ado about (Practically) Nothing will cover this spectrum of ideas, interspersed with the author's own work which will serve to introduce each gas and the important work others have done with them. The rare gases have participated in a wide range of scientific advances-even revolutions-but no book has ever recorded the entire story. Fisher will range from the intricacies of the atomic nucleus and the tiniest of elementary particles, the neutrino, to the energy source of the stars; from the age of the earth to its future energies; from life on Mars to cancer here on earth. A whole panoply that has never before been told as an entity.


1970 ◽  
Vol 19 (1-2) ◽  
pp. 264-267 ◽  
Author(s):  
F.H. Reuling ◽  
J.T. Schwartz

In the late 1950's and early 1960's, it became evident that some glaucoma patients developed elevations of intraocular pressure, which were difficult to control, following prolonged use of systemic or ocular medications containing corticosteroids (Chandler, 1955, Alfano, 1963; Armaly, 1963). In addition, some patients without glaucoma, when treated with steroids for long periods of time, developed clinical signs of chronic simple glaucoma (McLean, 1950; François, 1954; Covell, 1958; Linner, 1959; Goldman, 1962). Fortunately, the elevation of intraocular pressure was reversible if the drug was discontinued.Over the past decade, extensive investigation of the “steroid response” has been undertaken. For this presentation, the steroid response may be considered as a gradual elevation of intraocular pressure, occurring over several weeks, in an eye being medicated with corticosteroid drops several times a day. The elevation in pressure is usually accompanied by a reduction in the facility of aqueous outflow. When relatively large numbers of subjects were tested with topical steroids, so that a wide range of responsiveness could be observed, a variation in individual sensitivity was demonstrated. Frequency distributions of intraocular pressure or change in pressure following steroids showed a skew toward the high side. On the basis of trimodal characteristics which they observed in such frequency distributions, Becker and Hahn (1964), Becker (1965) and Armaly (1965, 1966) considered the possible existence of several genetically determined subpopulations. These investigators distinguished three subpopulations on the basis of low, intermediate, and high levels of pressure response. It was hypothesized that these levels of response characterized three phenotypes, corresponding to the three possible genotypes of an allele pair, wherein one member of the pair determined a low level of response, and the other member determined a high level of response (Armaly, 1967).


Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 731-742 ◽  
Author(s):  
D Lal ◽  
A J T Jull

Nuclear interactions of cosmic rays produce a number of stable and radioactive isotopes on the earth (Lai and Peters 1967). Two of these, 14C and 10Be, find applications as tracers in a wide variety of earth science problems by virtue of their special combination of attributes: 1) their source functions, 2) their half-lives, and 3) their chemical properties. The radioisotope, 14C (half-life = 5730 yr) produced in the earth's atmosphere was the first to be discovered (Anderson et al. 1947; Libby 1952). The next longer-lived isotope, also produced in the earth's atmosphere, 10Be (half-life = 1.5 myr) was discovered independently by two groups within a decade (Arnold 1956; Goel et al. 1957; Lal 1991a). Both the isotopes are produced efficiently in the earth's atmosphere, and also in solids on the earth's surface. Independently and jointly they serve as useful tracers for characterizing the evolutionary history of a wide range of materials and artifacts. Here, we specifically focus on the production of 14C in terrestrial solids, designated as in-situ-produced 14C (to differentiate it from atmospheric 14C, initially produced in the atmosphere). We also illustrate the application to several earth science problems. This is a relatively new area of investigations, using 14C as a tracer, which was made possible by the development of accelerator mass spectrometry (AMS). The availability of the in-situ 14C variety has enormously enhanced the overall scope of 14C as a tracer (singly or together with in-situ-produced 10Be), which eminently qualifies it as a unique tracer for studying earth sciences.


Parasitology ◽  
1915 ◽  
Vol 8 (1) ◽  
pp. 11-16 ◽  
Author(s):  
L. E. Robinson

Variability in the size and, in a lesser degree, the taxonomic features of male ticks, has arrested the attention of all who have had occasion to examine moderately large numbers of examples of the same species. In the case of the female tick, this variability, though doubtless coextensive with that of the male, is more or less obscured by the wide range of variation in size, depending upon the degree of engorgement; and, also, by the fact that in the female tick the taxonomic characters are, as a rule, less pronounced. The present note is only concerned with variability in the size of the male.


1979 ◽  
Vol 84 (B14) ◽  
pp. 8183 ◽  
Author(s):  
Carol S. Breed ◽  
Maurice J. Grolier ◽  
John F. McCauley
Keyword(s):  

1913 ◽  
Vol 17 (2) ◽  
pp. 117-131
Author(s):  
Hans Zinsser

The experiments recorded in this paper confirm the observations of Friedberger that acutely toxic bodies can be produced from typhoid bacilli by the action of sensitizer and complement and that, when small quantities of bacteria are used, an excess of sensitization either interferes with the formation of the poisons or leads to a cleavage of the bacterial proteid beyond the poisonous intermediate products spoken of as anaphylatoxins. Unlike the experience of other workers with poisons of this nature, however, our experiments have shown that the action of complement upon typhoid bacilli strongly sensitized or not at all sensitized may be carried on, at body temperature, for considerably longer than twelve hours without leading to a destruction of the poisons, and that this is true when the quantities of the bacteria used vary within the wide range of from one to twelve agar slants. It has been found, in fact, that in the case of this microorganism prolonged exposure at the higher temperature of considerable quantities of bacteria constitutes an unfailing method of regularly obtaining powerful poisons. The results obtained by the use of smaller quantities and the less vigorous complement action at low temperatures are far less regular or satisfactory. It would appear from this that complement action of considerable vigor is required to obtain from this bacillus any appreciable yield of anaphylatoxin, and that the poison, once formed, is not as unstable as that found in other microorganisms by Neufeld and Dold and others. In fact, although we have never observed complete lysis in vitro of the typhoid bacilli treated with antibody and complement, the sensitized bacteria exposed to the action of complement for as long as fifteen hours at 37.5° C. showed, in our experiments, much disintegration, and yet powerful poisons were present. Were the influence of lysis or of the too vigorous action of the serum bodies as rapidly poison-destroying in the case of this bacillus as it has been shown to be in the case of some other bacteria, it would be hard to understand how anaphylatoxins could play any part in the toxemia of typhoid fever. This phase of our experiments, however, seems to indicate that the conditions prevailing in the infected body at the height of this disease would furnish ideal criteria for anaphylatoxin production, since, in such cases, vigorously sensitized bacilli, in large numbers, are under the prolonged influence of considerable quantities of complement, conditions exactly comparable to those prevailing in our experiments. Granted that this state of affairs is actually the case, then the subsidence of the disease might depend merely upon limitation of the supply of antigen, as the increasing bactericidal action of the blood constituents come into play, and upon the consequent diminution of the anaphylatoxin. For as the bacteria diminish and the sensitizer increases, a changed proportion between them is established which, finally, as experiment has shown, results in a failure of anaphylatoxin production. For although our experiments have shown that, within a wide latitude of relative proportions of bacteria and antibody, anaphylatoxin can be formed, beyond this range an excess of one or the other element eventually will prevent their formation. It is not, however, the purpose of this paper to discuss the mechanism of the subsidence of the disease since this phase of the work will necessitate further experimental study. In regard to the experiments with kaolin, we were unable to confirm the contention of Keysser and Wassermann, though it is more than likely that toxic bodies could be formed by the action of complement upon any foreign proteid rendered amenable to its action. We are not inclined to attribute too much importance to these negative results, recording them merely as they occurred. However, should it be found subsequently that anaphylatoxins can be formed in this way, it seems unlikely that they are formed from the sensitizer or amboceptor as matrix, since this was not specifically adsorbed out of concentrated serum by the kaolin in our experiments. On the basis of experiments with so called endotoxins, ,we feel that the existence of such preformed intracellular poisons as an element in typhoid toxemia has not been proved, and is not absolutely necessary for the explanation of the phenomena occurring in this disease. However, the diarrhea, the hemorrhagic lesions, and the protracted symptoms following the injection of extracts and filtrates of the bacillus, differing so strikingly from the acute illness with rapid death or equally rapid recovery resulting from anaphylatoxin poisoning, would justify the assumption that poisons of this nature may still play a part in the disease, adding an additional specific characteristic to the clinical picture. As stated before, however, it is not improbable that all these characteristics may represent merely a more protracted or subacute state of anaphylatoxin toxemia. The experiments with autolysates, although none of them were fatal in their results upon guinea pigs, have sufficiently indicated that poisons comparable to anaphylatoxins can be formed in this way. This would indicate that a reaction of proteolysis, which may take place slowly by autolysis, is hastened by the action of complement, and its velocity is still further augmented by the increase, within certain limits, of the sensitization,—a conception which would attribute to the combined action of complement and sensitizer a function not incomparable to that of the bodies spoken of as catalytic agents.


2020 ◽  
Vol 41 (S1) ◽  
pp. s69-s70
Author(s):  
Angie Dains ◽  
Michael Edmond ◽  
Daniel Diekema ◽  
Stephanie Holley ◽  
Oluchi Abosi ◽  
...  

Background: Including infection preventionists (IPs) in hospital design, construction, and renovation projects is important. According to the Joint Commission, “Infection control oversights during building design or renovations commonly result in regulatory problems, millions lost and even patient deaths.” We evaluated the number of active major construction projects at our 800-bed hospital with 6.0 IP FTEs and the IP time required for oversight. Methods: We reviewed construction records from October 2018 through October 2019. We classified projects as active if any construction occurred during the study period. We describe the types of projects: inpatient, outpatient, non–patient care, and the potential impact to patient health through infection control risk assessments (ICRA). ICRAs were classified as class I (non–patient-care area and minimal construction activity), class II (patients are not likely to be in the area and work is small scale), class III (patient care area and work requires demolition that generates dust), and class IV (any area requiring environmental precautions). We calculated the time spent visiting construction sites and in design meetings. Results: During October 2018–October 2019, there were 51 active construction projects with an average of 15 active sites per week. These sites included a wide range of projects from a new bone marrow transplant unit, labor and delivery expansion and renovation, space conversion to an inpatient unit to a project for multiple air handler replacements. All 51 projects were classified as class III or class IV. We visited, on average, 4 construction sites each week for 30 minutes per site, leaving 11 sites unobserved due to time constraints. We spent an average of 120 minutes weekly, but 450 minutes would have been required to observe all 15 sites. Yearly, the required hours to observe these active construction sites once weekly would be 390 hours. In addition to the observational hours, 124 hours were spent in design meetings alone, not considering the preparation time and follow-up required for these meetings. Conclusions: In a large academic medical center, IPs had time available to visit only a quarter of active projects on an ongoing basis. Increasing dedicated IP time in construction projects is essential to mitigating infection control risks in large hospitals.Funding: NoneDisclosures: None


2021 ◽  
Author(s):  
Richard Saltus ◽  
Arnaud Chulliat ◽  
Brian Meyer ◽  
Christopher Amante

<p>Magnetic maps depict spatial variations in the Earth’s magnetic field.  These variations occur at a wide range of scales and are produced via a variety of physical processes related to factors including structure and evolution of the Earth’s core field and the geologic distribution of magnetic minerals in the lithosphere.  Mankind has produced magnetic maps for 100’s of years with increasing fidelity and accuracy and there is a general understanding (particularly among the geophysicists who produce and use these maps) of the approximate level of resolution and accuracy of these maps.  However, few magnetic maps, or the digital grids that typically underpin these maps, have been produced with accompanying uncertainty quantification.  When uncertainty is addressed, it is typically a statistical representation at the grid or survey level (e.g., +- 10 nT overall uncertainty based on line crossings for a modern airborne survey) and not at the cell by cell local level.</p><p>As magnetic map data are increasingly used in complex inversions and in combination with other data or constraints (including in machine learning applications), it is increasingly important to have a handle on the uncertainties in these data.  An example of an application with need for detailed uncertainty estimation is the use of magnetic map information for alternative navigation.  In this application data from an onboard magnetometer is compared with previously mapped (or modeled) magnetic variations.  The uncertainty of this previously mapped information has immediate implications for the potential accuracy of navigation.</p><p>We are exploring the factors contributing to magnetic map uncertainty and producing uncertainty estimates for testing using new data collection in previously mapped (or modeled) map areas.  These factors include (but are likely not limited to) vintage and type of measured data, spatial distribution of measured data, expectation of magnetic variability (e.g., geologic or geochemical environment), statistics of redundant measurement, and spatial scale/resolution of the magnetic map or model.  The purpose of this talk is to discuss the overall issue and our initial results and solicit feedback and ideas from the interpretation community.</p>


Sign in / Sign up

Export Citation Format

Share Document