scholarly journals Using AFLP markers for species differentiation and assessment of genetic variability of in vitro-cultured Papaver bracteatum (section Oxytona)

2002 ◽  
Vol 38 (3) ◽  
pp. 300-307 ◽  
Author(s):  
J. C. Carolan ◽  
I. L. I. Hook ◽  
J. J. Walsh ◽  
T. R. Hodkinson
Biologia ◽  
2010 ◽  
Vol 65 (4) ◽  
Author(s):  
Sara Rostampour ◽  
Haleh Sohi ◽  
Ali Dehestani

AbstractPersian poppy (Papaver bracteatum Lindl.) is an important commercial source of medicinal opiates and related compounds. In this research, calli were induced from seeds, roots, cotyledons and hypocotyls of P. bracteatum at a high efficiency. The optimized callus induction media consisted of the Murashige and Skoog (MS) basic media supplemented with 1.0 mg/L 2, 4-dichlorophenoxyacetic acid (2,4-D), 0.1 mg/L kinetin and 15 mg/L ascorbic acid. The concentrations of 2,4-D and ascorbic acid were found critical to callus induction and proliferation. Subsequent subcultures resulted in excellent callus proliferation. Ascorbic acid at concentration 15 mg/L increased the callus proliferation significantly. Maximum callus growth was achieved when the explants were incubated at 25°C. MS salts at full strength were found inhibitory for callus induction, while ľ MS salts were found to favor callus induction. Shoot regeneration of calli in vitro was achieved on ľ MS medium containing 0.5 mg/L benzylamine purine and 1.0 mg/L naphthalene acetic acid. Analysis of alkaloid extracts from Persian poppy tissues by high-performance liquid chromatography showed that thebaine accumulated in the tissues of plants. The thebaine alkaloid profile of the Persian poppy is a well-defined model to evaluate the potential for metabolic engineering of thebaine production in P. bracteatum.


2017 ◽  
Vol 45 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Constantinos SALIS ◽  
Ioannis E. PAPADAKIS ◽  
Spyridon KINTZIOS ◽  
Marianna HAGIDIMITRIOU

The behavior of six citrus rootstocks, Volkameriana, Citrumelo ‘Swingle’, Citrange ‘Carrizo’, Poncirus trifoliata ‘Serra’, Poncirus trifoliata ‘Rubidoux’ and Poncirus trifoliata ‘Flying Dragon’, in in vitro propagation was studied and compared for shoot proliferation and rooting. In addition, the genetic relationships among the rootstocks studied and other Citrus species, using the Inter-Simple Sequence Repeats (ISSR) molecular markers, were investigated. Nodal explants of three months old shoots were used in Murashige and Skoog medium supplemented with N6-benzyladenine (BA) for shoot proliferation and with naphthaleneacetic acid (NAA) for rooting. The rootstock Volkameriana showed a statistically significant higher number of shoots (1.81), shoot length (15.14 mm) and number of leaves per explant (5.81), while all three Poncirus trifoliata rootstocks showed the lowest numbers. The number of roots and root length per explant were evaluated at the end of the rooting phase. The rootstock ‘Swingle’ showed a higher number of roots per explant (4.2) followed by ‘Flying Dragon’ (3.93) and ‘Carrizo’ (3.23) rootstocks. The rootstocks ‘Swingle’ (140.8 mm), Volkameriana (148 mm) and ‘Flying Dragon’ (131.12 mm) had significantly higher root length per explant compared to ‘Carrizo’ (31 mm) and ‘Rubidoux’ (34.5 mm). The ISSR molecular marker technique used in the present study grouped successfully the different species, varieties and rootstocks studied, revealing their genetic variability. The genetic variability observed among the rootstocks ranged between 0.29 (Poncirus trifoliata ‘Serra’ and Citrumelo ‘Swingle’) and 0.60 (Volkameriana and Citrumelo ‘Swingle’). The response of the rootstocks studied in in vitro propagation however is not related to their genetic affinity.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Bettina Schulthess ◽  
Daniel Schäfle ◽  
Nicole Kälin ◽  
Tamara Widmer ◽  
Peter Sander

ABSTRACT Recent outbreaks of cardiac surgery-associated Mycobacterium chimaera infections have highlighted the importance of species differentiation within the Mycobacterium avium complex and pointed to a lack of antibiotic susceptibility data for M. chimaera. Using the MGIT 960/EpiCenter TB eXiST platform, we have determined antibiotic susceptibility patterns of 48 clinical M. chimaera isolates and 139 other nontuberculous mycobacteria, including 119 members of the M. avium complex and 20 Mycobacterium kansasii isolates toward clofazimine and other drugs used to treat infections with slow-growing nontuberculous mycobacteria (NTM). MIC50, MIC90, and tentative epidemiological cutoff (ECOFF) values for clofazimine were 0.5 mg/liter, 1 mg/liter, and 2 mg/liter, respectively, for M. chimaera. Comparable values were observed for other M. avium complex members, whereas lower MIC50 (≤0.25 mg/liter), MIC90 (0.5 mg/liter), and ECOFF (1 mg/liter) values were found for M. kansasii. Susceptibility to clarithromycin, ethambutol, rifampin, rifabutin, amikacin, moxifloxacin, and linezolid was in general similar for M. chimaera and other members of the M. avium complex, but increased for M. kansasii. The herein determined MIC distributions, MIC90, and ECOFF values of clofazimine for M. chimaera and other NTM provide the basis for the definition of clinical breakpoints. Further studies are needed to establish correlation of in vitro susceptibility and clinical outcome.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 754 ◽  
Author(s):  
Jericó Bello-Bello ◽  
José Spinoso-Castillo ◽  
Samantha Arano-Avalos ◽  
Eduardo Martínez-Estrada ◽  
María Arellano-García ◽  
...  

Worldwide demands of Vanilla planifolia lead to finding new options to produce large-scale and contaminant-free crops. Particularly, the Mexican Government has classified Vanilla planifolia at risk and it subject to protection programs since wild species are in danger of extinction and no more than 30 clones have been found. Nanotechnology could help to solve both demands and genetic variability, but toxicological concerns must be solved. In this work, we present the first study of the cytotoxic and genotoxic effects promoted by AgNPs in Vanilla planifolia plantlets after a very long exposure time of six weeks. Our results show that Vanilla planifolia plantlets growth with doses of 25 and 50 mg/L is favored with a small decrease in the mitotic index. A dose-dependency in the frequency of cells with chromosomal aberrations and micronuclei was found. However, genotoxic effects could be considered as minimum due to with the highest concentration employed (200 mg/L), the total percentage of chromatic aberrations is lower than 5% with only three micronuclei in 3000 cells, despite the long-time exposure to AgNP. Therefore, 25 and 50 mg/L (1.5 and 3 mg/L of metallic silver) were identified as safe concentrations for Vanilla planifolia growth on in vitro conditions. Exposure of plantlets to AgNPs increase the polymorphism registered by inter-simple sequence repeat method (ISSR), which could be useful to promote the genetic variability of this species.


AoB Plants ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Efthalia Stathi ◽  
Konstantinos Kougioumoutzis ◽  
Eleni M Abraham ◽  
Panayiotis Trigas ◽  
Ioannis Ganopoulos ◽  
...  

Abstract The Mediterranean hot spot includes numerous endemic and socio-economically important plant species seriously threatened by climate change and habitat loss. In this study, the genetic diversity of five populations of Cicer graecum, an endangered endemic species from northern Peloponnisos, Greece and a wild relative of the cultivated Cicer arietinum, was investigated using inter-simple sequence repeats (ISSRs) and amplified fragment length polymorphism (AFLP) markers in order to determine levels and structure of genetic variability. Nei’s gene diversity by ISSR and AFLP markers indicated medium to high genetic diversity at the population level. Moreover, AMOVA results suggest that most of the variation exists within (93 % for AFLPs and 65 % for ISSRs), rather than among populations. Furthermore, Principal Component Analysis based on ISSRs positively correlated the genetic differentiation among the populations to the geographic distances, suggesting that the gene flow among distant populations is limited. The ecological adaptation of C. graecum populations was also investigated by correlation of their genetic diversity with certain environmental variables. Aridity arose as the dominant factor positively affecting the genetic diversity of C. graecum populations. We modelled the realized climatic niche of C. graecum in an ensemble forecasting scheme under three different global circulation models and two climate change scenarios. In all cases, a severe range contraction for C. graecum is projected, highlighting the high extinction risk that is probably going to face during the coming decades. These results could be a valuable tool towards the implementation of an integrated in situ and ex situ conservation scheme approach for activating management programmes for this endemic and threatened species.


Sign in / Sign up

Export Citation Format

Share Document