The influence of rehydration technique on the response of recalcitrant seed embryos to desiccation

2004 ◽  
Vol 14 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Rosa Perán ◽  
N.W. Pammenter ◽  
Janine Naicker ◽  
Patricia Berjak

The concept of ‘imbibitional damage’ arose when it was observed that considerable leakage of cell contents could occur when dry seed or pollen tissues are plunged directly into water. It is now common practice to imbibe dehydrated tissue slowly, to permit the re-establishment of functional membranes, prior to placing the tissue into liquid water. However, this argument may not hold if the tissue of interest is inherently desiccation-sensitive. Slow drying of desiccation-sensitive (recalcitrant) seeds or excised embryonic axes results in damage at high water contents, because it permits time for aqueous-based deleterious processes to occur. The same argument may apply if partially dried material is re-imbibed slowly, as this technique will also expose the tissue to intermediate water contents for protracted periods. This hypothesis was tested using embryos or axes from seeds of three recalcitrant species (Artocarpus heterophyllus, Podocarpus henkelii and Ekebergia capensis). Excised material was rapidly dried to water contents within the range over which viability is lost during drying, and re-imbibed either rapidly, by plunging directly into water, or slowly, by placing the material on damp filter paper or exposing it to a saturated atmosphere for several hours. Although details of the response differed among species and developmental stage, in all cases direct re-imbibition in water resulted in higher (or similar, but never lower) survival than either of the slow rehydration techniques.

1999 ◽  
Vol 9 (1) ◽  
pp. 13-37 ◽  
Author(s):  
N. W. Pammenter ◽  
Patricia Berjak

AbstractA suite of mechanisms or processes that together have been implicated in the acquisition and maintenance of desiccation tolerance in orthodox seeds is discussed in the context of the behaviour of desiccation-sensitive seeds, and where appropriate, parallels are drawn with the situation in vegetative plant tissues that tolerate dehydration. Factors included are: physical characteristics of cells and intracellular constituents; insoluble reserve accumulation; intracellular de-differentiation; metabolic ‘switching off’; presence, and efficient operation, of antioxidant systems; accumulation of putatively protective substances including LEAs, sucrose and other oligosaccharides, as well as amphipathic molecules; the presence and role of oleosins; and the presence and operation of repair systems during rehydration. The variable response to dehydration shown by desiccation-sensitive seeds is considered in terms of the absence or incomplete expression of this suite of mechanisms or processes.Three categories of damage are envisaged: (i) reduction in cell volume which can lead to mechanical damage; (ii) aqueous-based degradative processes, probably consequent upon deranged metabolism at intermediate water contents. This is termed ‘metabolism-induced damage’ and its extent will depend upon the metabolic rate and the rate of dehydration; and (iii) the removal of water intimately associated with macromolecular surfaces leading to denaturation: this is referred to as desiccation damagesensu stricto. The effects of drying rate and the maturity status of seeds are considered in relation to the responses to dehydration, leading to the conclusion that the concept of critical water contents on a species basis is inappropriate. Viewing seed postharvest physiology in terms of a continuum of behaviour is considered to be more realistic than attempting precise categorization.Rapid dehydration of excised embryonic axes (or other explants) from desiccation-sensitive seeds permits retention of viability (in the short term) to water contents approaching the level of non-freezable water. This opens up the possibility of long-term conservation, by cryopreservation techniques, of the genetic resources of species producing non-orthodox seeds.


Author(s):  
Jens Konnerup-Madsen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Konnerup-Madsen, J. (2001). A review of the composition and evolution of hydrocarbon gases during solidification of the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 159-166. https://doi.org/10.34194/ggub.v190.5187 _______________ Fluid inclusions in minerals from agpaitic nepheline syenites and hydrothermal veins in the Ilímaussaq complex and in similar agpaitic complexes on the Kola Peninsula, Russia, are dominated by hydrocarbon gases (predominantly methane) and hydrogen. Such volatile compositions differ considerably from those of most other igneous rocks and their formation and entrapment in minerals reflects low oxygen fugacities and a wide range of crystallisation temperatures extending to a low-temperature solidus. Their composition reflects initial low carbon contents and high water contents of the magma resulting in the exsolution of a waterrich CO2–H2O dominated vapour phase. Fractionation of chlorides into the vapour phase results in high salinities and the subsequent development of a heterogeneous vapour phase with a highly saline aqueous-rich fraction and a methane-dominated fraction, with preferential entrapment of the latter, possibly due to different wetting characteristics. The light stable isotope compositions support an abiogenic origin for the hydrocarbons in agpaitic nepheline syenite complexes.


1993 ◽  
Vol 3 (3) ◽  
pp. 155-166 ◽  
Author(s):  
Patricia Berjak ◽  
Christina W. Vertucci ◽  
N. W. Pammenter

AbstractThe effect of rate of dehydration was assessed for embryonic axes from mature seeds of Camellia sinensis and the desiccation sensitivity of axes of different developmental stages was estimated using electrolyte leakage. Rapidly (flash) dried excised axes suffered desiccation damage at lower water contents (0.4 g H2O (g DW)−1) than axes dried more slowly in the whole seed (0.9 g H2O (g DW)−1). It is possible that flash drying of isolated axes imposes a stasis on deteriorative reactions that does not occur during slower dehydration. Differential scanning calorimetry (DSC) of the axes indicated that the enthalpy of the melting and the amount of non-freezable water were similar, irrespective of the drying rate.Very immature axes that had completed morphogenesis and histodifferentiation only were more sensitive to desiccation (damage at 0.7 g H2O (g DW)−1) than mature axes or axes that were in the growth and reserve accumulation phase (damage at 0.4 g H2O (g DW)−1). As axes developed from maturity to germination, their threshold desiccation sensitivity increased to a higher level (1.3−1.4 g H2O (g DW)−1). For the very immature axes, enthalpy of the melting of tissue water was much lower, and the level of non-freezable water considerably higher, than for any other developmental stage studied.There were no marked correlations between desiccation sensitivity and thermal properties of water. Desiccation sensitivity appears to be related more to the degree of metabolic activity evidenced by ultrastructural characteristics than to the physical properties of water.


Author(s):  
Kai Xing ◽  
Qihai Shu ◽  
David R Lentz

Abstract There are more than 90 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a continental arc setting related to the subduction of the Paleo-Pacific oceanic plate in the Jurassic and subsequent slab rollback in the early Cretaceous. The Jurassic Daheishan porphyry Mo deposit is one of the largest Mo deposits in NE China, which contains 1.09 Mt Mo with an average Mo grade of 0.07%. To better understand the factors that could have controlled Mo mineralization at Daheishan, and potentially in other similar porphyry Mo deposits in NE China, the geochemical and isotopic compositions of the ore-related granite porphyry and biotite granodiorite, and the magmatic accessory minerals apatite, titanite and zircon from the Daheishan intrusions, were investigated so as to evaluate the potential roles that magma oxidation states, water contents, sulfur and metal concentrations could have played in the formation of the deposit. Magmatic apatite and titanite from the causative intrusions show similar εNd(t) values from -1.1 to 1.4, corresponding to TDM2 ages ranging from 1040 to 840 Ma, which could be accounted for by a mixing model through the interaction of mantle-derived basaltic melts with the Precambrian lower crust. The Ce and Eu anomalies of the magmatic accessory minerals have been used as proxies for magma redox state, and the results suggest that the ore-forming magmas are highly oxidized, with an estimated ΔFMQ range of + 1.8 to + 4.1 (+2.7 in average). This is also consistent with the high whole-rock Fe2O3/FeO ratios (1.3–26.4). The Daheishan intrusions display negligible Eu anomalies (Eu/Eu* = 0.7–1.1) and have relatively high Sr/Y ratios (40–94) with adakitic signatures; they also have relatively high Sr/Y ratios in apatite and titanite. These suggest that the fractionation of amphibole rather than plagioclase is dominant during the crystallization of the ore-related magmas, which further indicates a high magmatic water content (e.g., >5 wt%). The magmatic sulfur concentrations were calculated using available partitioning models for apatite from granitoids, and the results (9–125 ppm) are indistinguishable from other mineralized, subeconomic and barren intrusions. Furthermore, Monte Carlo modelling has been conducted to simulate the magmatic processes associated with the formation of the Daheishan Mo deposit, and the result reveals that a magma volume of ∼280 km3 with ∼10 ppm Mo was required to form the Mo ores containing 1.09 Mt Mo in Daheishan. The present study suggests that a relatively large volume of parental magmas with high oxygen fugacities and high water contents is essential for the generation of a giant porphyry Mo deposit like Daheishan, whereas a specific magma composition (e.g., with unusually high Mo and/or S concentrations), might be less critical.


Author(s):  
Muhammad Zahoor ◽  
Muhammad Ikram ◽  
Nausheen Nazir ◽  
Sumaira Naz ◽  
Gaber El-Saber Batiha ◽  
...  

: Herbal remedies have been employed for the treatment and management of different diseases for ages. Herbal medicines are a promising choice over modern synthetic drugs because of their low side effects and are thus considered safe and effective in treating human diseases. Lagenaria siceraria (Mol.) Standley fruit (Bottle gourd) belongs to the Cucurbitaceae family that has been used in a different system of traditional medication to treat various diseases. This is a domestic plant that provides food as well as medication. This vegetable has low caloric values and high water contents. The edible portion of it contains phytochemicals like vitamins, proteins, choline, minerals, terpenoids, flavonoids etc. Several bioactive compounds have been isolated from L. siceraria, including triterpenoids, sterols, cucurbitacins, flavones, C-glycosides and β-glycosides. Researchers have evaluated various parts of this plant viz., fruit, root, flowers, and leaves for pharmacological activities like antianxiety, antidepressant, diuretic, antimicrobial, cytotoxic, antihyperlipidemic, cardioprotective, analgesic, anti-inflammatory, anthelmintic, anti-hyperglycemic, antihepatotoxic, anti-urolithiatic, antistress, antiulcer, anticancer, hepatoprotective, anthelmintic, immunomodulatory, and antioxidant. In this review, an attempt has been made to explore its phytochemical constituents, traditional, medicinal, and pharmacological uses to highlight the therapeutic importance of this well-known plant. This would be helpful in reviving its importance and highlight its several promising aspects to encourage researchers for further research on L. siceraria.


2017 ◽  
Vol 5 (38) ◽  
pp. 9952-9962 ◽  
Author(s):  
Ravinder Singh ◽  
Hsin-Yen Wu ◽  
Atul Kumar Dwivedi ◽  
Ashutosh Singh ◽  
Chien-Min Lin ◽  
...  
Keyword(s):  

AIE behaviour of TPE with open and closed forms of DAE in a photo-switchable polymer is studied in high water contents.


2002 ◽  
Vol 19 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Jorge Alcázar ◽  
Paul M. Woodard ◽  
Richard L. Rothwell

Abstract Physical soil properties created by three mechanical site preparation treatments (ripper ploughing, disc trenching, and blading) and a control were evaluated to determine the success of these different mechanical site preparation treatments in creating plantable microsites and to estimate the potential for soil erosion created by each treatment. Three sites with fine textured soils and high water contents near Whitecourt, Alberta, Canada), were selected for study. The topography at all sites was similar and characterized by slopes 3.7 to 20% in steepness and approximately 190 to 270 m in length extending from the height of land to stream bottoms. The number of planting sites and the soil characteristics suggest ripper ploughing as the best site preparation treatment in this study, with the hinge microsite as the preferred planting spot. All three treatments significantly improved the physical conditions of the soil compared to the control, although the differences among treatments were small. Soil erosion was observed on areas where blading and ripper ploughing exposed mineral soil. Gullies, which exposed the roots of seedlings, were created by water erosion in the blading treatment area. Sediment deposition in trenches was observed on ripper ploughed areas, and at times, seedlings within this treatment area were partially buried as a result of this soil movement.


1990 ◽  
Vol 36 (123) ◽  
pp. 179-187 ◽  
Author(s):  
E.M. Morris ◽  
R.J. Kelly

AbstractRecent mathematical models treat a natural snow-pack as a mixture body consisting of solid ice grains, liquid water, and a gas made up of air and water vapour. Such a model requires two independent constitutive equations for the two independent volume fractions. However, so far only one equation, a power law relating the liquid-water content to capillary pressure, has been suggested, by analogy with the so-called “characteristic” equation for liquid water in soils. Experimental data from drainage tests on snow columns may be used to determine the characteristic equation for snow for relatively high water contents. However, the experimental method is not valid when water exists in isolated inclusions in the snow, i.e. in the pendular regime. In this paper a theoretical method is used to derive two independent volume-fraction laws for snow in the pendular regime.


Sign in / Sign up

Export Citation Format

Share Document