Expression of Non-steroidal Anti-inflammatory Drug-activated Gene-1 in Human Nasal Mucosa and Cultured Nasal Epithelial Cells: A Preliminary Investigation

2003 ◽  
Vol 123 (7) ◽  
pp. 857-861 ◽  
Author(s):  
Kyung-Su Kim ◽  
Ji-Hyun Shin ◽  
Seung Joon Baek ◽  
Joo-Heon Yoon
2019 ◽  
Vol 86 (2) ◽  
pp. 171-176 ◽  
Author(s):  
Chenxu Zhao ◽  
Yazhou Wang ◽  
Xue Yuan ◽  
Guoquan Sun ◽  
Bingyu Shen ◽  
...  

AbstractSubacute ruminal acidosis (SARA) can increase the level of inflammation and induce rumenitis in dairy cows. Berberine (BBR) is the major active component of Rhizoma Coptidis, which is a type of Chinese anti-inflammatory drug for gastrointestinal diseases. The purpose of this study was to investigate the anti-inflammatory effects of BBR on lipopolysaccharide (LPS)-stimulated rumen epithelial cells (REC) and the underlying molecular mechanisms. REC were cultured and stimulated with LPS in the presence or absence of different concentrations of BBR. The results showed that cell viability was not affected by BBR. Moreover, BBR markedly decreased the concentrations and mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the LPS-treated REC in a dose-dependent manner. Importantly, Western blotting analysis showed that BBR significantly suppressed the protein expression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and the phosphorylation of nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in LPS-treated REC. Furthermore, the results of immunocytofluorescence showed that BBR significantly inhibited the nuclear translocation of NF-κB p65 induced by LPS treatment. In conclusion, the protective effects of BBR on LPS-induced inflammatory responses in REC may be due to its ability to suppress the TLR4-mediated NF-κB and MAPK signaling pathways. These findings suggest that BBR can be used as an anti-inflammatory drug to treat inflammation induced by SARA.


2018 ◽  
Vol 85 (5) ◽  
pp. 265-270 ◽  
Author(s):  
Nozomu Wakayama ◽  
Shoji Matsune ◽  
Eriko Takahara ◽  
Kuwon Sekine ◽  
Yuma Yoshioka ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Giusy Daniela Albano ◽  
Anna Bonanno ◽  
Luca Cavalieri ◽  
Eleonora Ingrassia ◽  
Caterina Di Sano ◽  
...  

IL-17A is involved in the activation of oxidative stress and inflammation in nasal epithelial cells. Hyaluronan (HA) in its high molecular weight form (HMW-HA) shows anti-inflammatory responses in contrast to low and medium molecular weight HA (LMW-HA and MMW-HA). The aim of this study was to investigate the pro- or anti-inflammatory biologic function of HA at different molecular weight in anin vitromodel of nasal inflammation IL-17A mediated. We evaluated the ERK1/2 and IκBαphosphorylation, NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 protein, and mRNA levels, in nasal epithelial cells RPMI 2650 stimulated with recombinant human (rh) IL-17A. Furthermore, the cells were treated with HMW-HA, MMW-HA, LMW-HA, and U0126. Our results showed that rhIL-17A increased the ERK1/2, IκBαphosphorylation and NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 proteins, and mRNA levels. The addiction of HMW-HA or U0126 showed a significant downregulatory effect on inflammation due to the rhIL-17A stimulation in nasal epithelial cells. IL-17A is able to generate oxidative stress and inflammation via the activation of ERK1/2/NF-κB pathway in nasal epithelial cells. The HMW-HA might represent a coadjuvant of the classic anti-inflammatory/antioxidative treatment of nasal epithelial cells during IL-17A nasal inflammation.


2005 ◽  
Vol 19 (3) ◽  
pp. 236-239 ◽  
Author(s):  
Zhen Dong ◽  
Zhanquan Yang ◽  
Chengshuo Wang

Background Epithelium of nasal mucosa is the first line of defense against invading pathogens. This study investigated the expression of Toll-like receptor (TLR) 2 and TLR4 in epithelial cells of nasal mucosa and understood the role of TLRs in the innate immunity of nasal mucosa. Methods Human nasal epithelial cells were obtained by scraping the middle one-third of inferior turbinates from 30 patients with chronic rhinosinusitis and 20 healthy adult volunteers. The epithelial cells are made into smears. In situ hybridization was performed for TLR2 and TLR4 messenger RNA (mRNA). Results TLR2 and TLR4 mRNA were expressed in the nasal epithelial cells. The expression of the two genes was significantly higher in the chronic rhinosinusitis group than in the normal control (TLR2, t = 8.605, p < 0.0005; TLR4, t = 9.050, p < 0.0005). Conclusion This study is the first to establish the presence of both TLR2 and TLR4 mRNA on epithelial cells of nasal mucosa, and their expression can be up-regulated in infectious conditions. These results show that TLR2 and TLR4 may play a important role in local host defense of nasal mucosa.


2003 ◽  
Vol 97 (1) ◽  
pp. 90-96 ◽  
Author(s):  
LAURA PUJOLS ◽  
JOAQUIM MULLOL ◽  
PEDRO BENÍTEZ ◽  
ALFONS TORREGO ◽  
ANTONI XAUBET ◽  
...  

Author(s):  
Akira Nakazono ◽  
Yuji Nakamaru ◽  
Mahnaz Ramezanpour ◽  
Takeshi Kondo ◽  
Masashi Watanabe ◽  
...  

BackgroundFrom the first detection in 2019, SARS-CoV-2 infections have spread rapidly worldwide and have been proven to cause an urgent and important health problem. SARS-CoV-2 cell entry depends on two proteins present on the surface of host cells, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). The nasal cavity is thought to be one of the initial sites of infection and a possible reservoir for dissemination within and between individuals. However, it is not known how the expression of these genes is regulated in the nasal mucosa.ObjectiveIn this study, we examined whether the expression of ACE2 and TMPRSS2 is affected by innate immune signals in the nasal mucosa. We also investigated how fluticasone propionate (FP), a corticosteroid used as an intranasal steroid spray, affects the gene expression.MethodsPrimary human nasal epithelial cells (HNECs) were collected from the nasal mucosa and incubated with Toll-like receptor (TLR) agonists and/or fluticasone propionate (FP), followed by quantitative PCR, immunofluorescence, and immunoblot analyses.ResultsAmong the TLR agonists, the TLR3 agonist Poly(I:C) significantly increased ACE2 and TMPRSS2 mRNA expression in HNECs (ACE2 36.212±11.600-fold change, p&lt;0.0001; TMPRSS2 5.598±2.434-fold change, p=0.031). The ACE2 protein level was also increased with Poly(I:C) stimulation (2.884±0.505-fold change, p=0.003). The Poly(I:C)-induced ACE2 expression was suppressed by co-incubation with FP (0.405±0.312-fold change, p=0.044).ConclusionThe activation of innate immune signals via TLR3 promotes the expression of genes related to SARS-CoV2 cell entry in the nasal mucosa, although this expression is suppressed in the presence of FP. Further studies are required to evaluate whether FP suppresses SARS-CoV-2 viral cell entry.


Sign in / Sign up

Export Citation Format

Share Document