The algebraic multiplicity of the complex eigenvalues of population operator and its application

2001 ◽  
Vol 80 (3-4) ◽  
pp. 257-268
Author(s):  
Xue-Zhi Li ◽  
Geni Gupur ◽  
Chun-Lei Tang ◽  
Guang-Tian Zhu
2006 ◽  
Vol 11 (1) ◽  
pp. 13-32 ◽  
Author(s):  
B. Bandyrskii ◽  
I. Lazurchak ◽  
V. Makarov ◽  
M. Sapagovas

The paper deals with numerical methods for eigenvalue problem for the second order ordinary differential operator with variable coefficient subject to nonlocal integral condition. FD-method (functional-discrete method) is derived and analyzed for calculating of eigenvalues, particulary complex eigenvalues. The convergence of FD-method is proved. Finally numerical procedures are suggested and computational results are schown.


Author(s):  
Grzegorz Tytko ◽  
Łukasz Dawidowski

Purpose Discrete eigenvalues occur in eddy current problems in which the solution domain was truncated on its edge. In case of conductive material with a hole, the eigenvalues are complex numbers. Their computation consists of finding complex roots of a complex function that satisfies the electromagnetic interface conditions. The purpose of this paper is to present a method of computing complex eigenvalues that are roots of such a function. Design/methodology/approach The proposed approach involves precise determination of regions in which the roots are found and applying sets of initial points, as well as the Cauchy argument principle to calculate them. Findings The elaborated algorithm was implemented in Matlab and the obtained results were verified using Newton’s method and the fsolve procedure. Both in the case of magnetic and nonmagnetic materials, such a solution was the only one that did not skip any of the eigenvalues, obtaining the results in the shortest time. Originality/value The paper presents a new effective method of locating complex eigenvalues for analytical solutions of eddy current problems containing a conductive material with a hole.


2001 ◽  
Vol 131 (5) ◽  
pp. 1003-1022 ◽  
Author(s):  
C. Bivià-Ausina ◽  
J. J. Nuño-Ballesteros

We define the deformation multiplicity of a map germ f: (Cn, 0) → (Cp, 0) with respect to a Boardman symbol i of codimension less than or equal to n and establish a geometrical interpretation of this number in terms of the set of Σi points that appear in a generic deformation of f. Moreover, this number is equal to the algebraic multiplicity of f with respect to i when the corresponding associated ring is Cohen-Macaulay. Finally, we study how algebraic multiplicity behaves with weighted homogeneous map germs.


1976 ◽  
Vol 65 (11) ◽  
pp. 4571-4574 ◽  
Author(s):  
Michael Hehenberger ◽  
Piotr Froelich ◽  
Erkki Brändas
Keyword(s):  

2006 ◽  
Vol 21 (31n33) ◽  
pp. 2351-2358
Author(s):  
C. Kurokawa ◽  
K. Katō

The 3α resonant states of 12 C are investigated by taking into account the correct boundary condition for three-body resonant states. In order to show how the 3α resonant states having complex eigenvalues contribute to the real energy, we calculated the Continuum Level Density in the Complex Scaling Method.


1994 ◽  
Vol 77 (5) ◽  
pp. 2481-2495 ◽  
Author(s):  
M. Sammon

A multivariate model is outlined for a distributed respiratory central pattern generator (RCPG) and its afferent control. Oscillatory behavior of the system depends on structure and symmetry of a matrix of phase-switching functions (F omega, phi) that control distribution of central excitation (CE) and inhibition (CI) within the circuit. The matrix diagonal (F omega) controls activation of CI variables as excitatory inputs are altered (e.g., central and afferent contributions to inspiratory off switch); off-diagonal terms (F phi) distribute excitations within the CI system and produce complex eigenvalues at the switching points between inspiration and expiration. For null F phi, phase switchings of saddle equilibria located at end expiration and end inspiration are overdamped all-or-nothing events; graded control of CI is seen for phi > 0. When coupling is significant (phi >> 0), CI dynamics become underdamped, admitting a domain of inputs where chaotic behavior is predictably observed. For the homogeneous RCPG (symmetric F omega, phi), CE oscillations are one-dimensional limit cycles (D = 1) or weakly chaotic (D approximately equal to 1). When perturbations from symmetry are significant, the distributed RCPG becomes partitioned where strongly chaotic oscillations (D > or = 2) and central apnea (D = 0) are seen more frequently. The equations provide means for mapping Silnikov bifurcations that alter the geometry and dimension of the breathing pattern and formalisms for discussing RCPG processing of afferent information.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Li ◽  
Yineng Liu ◽  
Zhifang Lin ◽  
Jack Ng ◽  
C. T. Chan

AbstractIntense light traps and binds small particles, offering unique control to the microscopic world. With incoming illumination and radiative losses, optical forces are inherently nonconservative, thus non-Hermitian. Contrary to conventional systems, the operator governing time evolution is real and asymmetric (i.e., non-Hermitian), which inevitably yield complex eigenvalues when driven beyond the exceptional points, where light pumps in energy that eventually “melts” the light-bound structures. Surprisingly, unstable complex eigenvalues are prevalent for clusters with ~10 or more particles, and in the many-particle limit, their presence is inevitable. As such, optical forces alone fail to bind a large cluster. Our conclusion does not contradict with the observation of large optically-bound cluster in a fluid, where the ambient damping can take away the excess energy and restore the stability. The non-Hermitian theory overturns the understanding of optical trapping and binding, and unveils the critical role played by non-Hermiticity and exceptional points, paving the way for large-scale manipulation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Michael Denner ◽  
Anastasiia Skurativska ◽  
Frank Schindler ◽  
Mark H. Fischer ◽  
Ronny Thomale ◽  
...  

AbstractWe introduce the exceptional topological insulator (ETI), a non-Hermitian topological state of matter that features exotic non-Hermitian surface states which can only exist within the three-dimensional topological bulk embedding. We show how this phase can evolve from a Weyl semimetal or Hermitian three-dimensional topological insulator close to criticality when quasiparticles acquire a finite lifetime. The ETI does not require any symmetry to be stabilized. It is characterized by a bulk energy point gap, and exhibits robust surface states that cover the bulk gap as a single sheet of complex eigenvalues or with a single exceptional point. The ETI can be induced universally in gapless solid-state systems, thereby setting a paradigm for non-Hermitian topological matter.


Sign in / Sign up

Export Citation Format

Share Document