Optimization study on preparation of amine functionalized sea mango (cerbera odollam) activated carbon for Carbon Dioxide (CO2) adsorption

2018 ◽  
Vol 190 (7) ◽  
pp. 1259-1282 ◽  
Author(s):  
Umi Fazara Md Ali ◽  
Nur Hidayah Azmi ◽  
Khairuddin Md Isa ◽  
Mohamed Kheireddine Aroua ◽  
Tan Ru Shien ◽  
...  
Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 634 ◽  
Author(s):  
Shazia Shukrullah ◽  
Muhammad Yasin Naz ◽  
Norani M. Mohamed ◽  
Khalid A. Ibrahim ◽  
Nasser M. AbdEl-Salam ◽  
...  

Carbon dioxide is one of the major greenhouse gases and a leading source of global warming. Several adsorbent materials are being tested for removal of carbon dioxide (CO2) from the atmosphere. The use of multiwalled carbon nanotubes (MWCNTs) as a CO2 adsorbent material is a relatively new research avenue. In this study, Fe2O3/Al2O3 composite catalyst was used to synthesize MWCNTs by cracking ethylene gas molecules in a fluidized bed chemical vapor deposition (CVD) chamber. These nanotubes were treated with H2SO4/HNO3 solution and functionalized with 3-aminopropyl-triethoxysilane (APTS). Chemical modification of nanotubes removed the endcaps and introduced some functional groups along the sidewalls at defected sites. The functionalization of nanotubes with amine introduced carboxylic groups on the tube surface. These functional groups significantly enhance the surface wettability, hydrophilicity and CO2 adsorption capacity of MWCNTs. The CO2 adsorption capacity of as-grown and amine-functionalized CNTs was computed by generating their breakthrough curves. BELSORP-mini equipment was used to generate CO2 breakthrough curves. The oxidation and functionalization of MWCNTs revealed significant improvement in their adsorption capacity. The highest CO2 adsorption of 129 cm3/g was achieved with amine-functionalized MWCNTs among all the tested samples.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 941
Author(s):  
Jun Liu ◽  
Qiang Chen ◽  
Peng Qi

Upgrading raw biogas to methane (CH4) is a vital prerequisite for the utilization of biogas as a vehicle fuel or the similar field as well. In this work, biogas yield from the anaerobic fermentation of food waste containing methane (CH4, 60.4%), carbon dioxide (CO2, 29.1%), hydrogen sulfide (H2S, 1.5%), nitrogen (N2, 7.35%) and oxygen (O2, 1.6%) was upgraded by dynamic adsorption. The hydrogen sulfide was removed from the biogas in advance by iron oxide (Fe2O3) because of its corrosion of the equipment. Commercial 13X zeolite and carbon molecular sieve (CMS) were used to remove the other impurity gases from wet or dry biogas. It was found that neither 13X zeolite nor CMS could effectively remove each of the impurities in the wet biogas for the effect of water vapor. However, 13X zeolite could effectively remove CO2 after the biogas was dried with silica and showed a CO2 adsorption capacity of 78 mg/g at the condition of 0.2 MPa and 25 °C. Additionally, 13X zeolite almost did not adsorb nitrogen (N2), so the CH4 was merely boosted to ac. 91% after the desulfurated dry biogas passed through 13X zeolite, nitrogen remaining in the biogas. CMS would exhibit superior N2 adsorption capacity and low CO2 adsorption capacity if some N2 was present in biogas, so CMS was able to remove all the nitrogen and fractional carbon dioxide from the desulfurated dry biogas in a period of time. Finally, when the desulfurated dry biogas passed through CMS and 13X zeolite in turn, the N2 and CO2 were sequentially removed, and then followed the high purity CH4 (≥96%).


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 855 ◽  
Author(s):  
Azry Borhan ◽  
Suzana Yusup ◽  
Jun Wei Lim ◽  
Pau Loke Show

Global warming due to the emission of carbon dioxide (CO2) has become a serious problem in recent times. Although diverse methods have been offered, adsorption using activated carbon (AC) from agriculture waste is regarded to be the most applicable one due to numerous advantages. In this paper, the preparation of AC from rubber-seed shell (RSS), an agriculture residue through chemical activation using potassium hydroxide (KOH), was investigated. The prepared AC was characterized by nitrogen adsorption–desorption isotherms measured in Micrometrices ASAP 2020 and FESEM. The optimal activation conditions were found at an impregnation ratio of 1:2 and carbonized at a temperature of 700 °C for 120 min. Sample A6 is found to yield the largest surface area of 1129.68 m2/g with a mesoporous pore diameter of 3.46 nm, respectively. Using the static volumetric technique evaluated at 25 °C and 1.25 bar, the maximum CO2 adsorption capacity is 43.509 cm3/g. The experimental data were analyzed using several isotherm and kinetic models. Owing to the closeness of regression coefficient (R2) to unity, the Freundlich isotherm and pseudo-second kinetic model provide the best fit to the experimental data suggesting that the RSS AC prepared is an attractive source for CO2 adsorption applications.


CrystEngComm ◽  
2015 ◽  
Vol 17 (2) ◽  
pp. 430-437 ◽  
Author(s):  
Carlos Palomino Cabello ◽  
Gloria Berlier ◽  
Giuliana Magnacca ◽  
Paolo Rumori ◽  
Gemma Turnes Palomino

Functionalization of the MIL-100(Cr) metal–organic framework with alkylamines (ethylenediamine and N,N′-dimethylethylenediamine) improves carbon dioxide sorption properties, especially in the case of ethylenediamine.


Author(s):  
Feng Zheng ◽  
R. Shane Addleman ◽  
Christopher L. Aardahl, ◽  
Glen E. Fryxell ◽  
Daryl R. Brown ◽  
...  

2019 ◽  
Vol 9 (10) ◽  
pp. 1977 ◽  
Author(s):  
Yu-Chun Chiang ◽  
Cheng-Yu Yeh ◽  
Chih-Hsien Weng

Polyacrylonitrile-based activated carbon fibers (ACFs), modified using potassium hydroxide (KOH) or tetraethylenepentamine (TEPA), were investigated for carbon dioxide (CO2) adsorption, which is one of the promising alleviation approaches for global warming. The CO2 adsorption isotherms were measured, and the values of isosteric heat of adsorption were calculated. The results showed that the KOH-modified ACFs exhibited a great deal of pore volume, and a specific surface area of 1565 m2/g was obtained. KOH activation made nitrogen atoms easily able to escape from the surface of ACFs. On the other hand, the surface area and pore volume of ACFs modified with TEPA were significantly reduced, which can be attributed to the closing or blocking of micropores by the N-groups. The CO2 adsorption on the ACF samples was via exothermic reactions and was a type of physical adsorption, where the CO2 adsorption occurred on heterogeneous surfaces. The CO2 uptakes at 1 atm and 25 °C on KOH-activated ACFs reached 2.74 mmole/g. This study observed that microporosity and surface oxygen functionalities were highly associated with the CO2 uptake, implying the existence of O-C coordination, accompanied with physical adsorption. Well cyclability of the adsorbents for CO2 adsorption was observed, with a performance decay of less than 5% over up to ten adsorption-desorption cycles.


Sign in / Sign up

Export Citation Format

Share Document