Assessing Nutrient Leaching Loss Using Nonweighing Lysimeters in Acidic Soils of Eastern Plateau and Hill Region of India

Author(s):  
Sushanta Kumar Naik ◽  
Santosh Sambhaji Mali ◽  
Omkar Kumar ◽  
Arun Kumar Singh ◽  
Bhagwati Prasad Bhatt
2015 ◽  
Vol 44 (2) ◽  
pp. 676-683 ◽  
Author(s):  
Ardeshir Adeli ◽  
J. Sheng ◽  
J. N. Jenkins ◽  
G. Feng

1999 ◽  
Vol 50 (2) ◽  
pp. 217 ◽  
Author(s):  
D. O. Huett ◽  
S. C. Morris

Nutrient leaching loss, plant growth, and nutrient uptake of 4-week (transplanting to sale) ground-cover species were investigated under a range of leaching conditions and with different sources of a controlled- release fertiliser (CRF), Osmocote NPK (3–4 month) (Osm). Osm was applied pre-planting at a rate equivalent to 800 g N/m3 to pots containing sand, and composted pinebark and hardwood sawdust medium that had received nutrient amendment during formulation. Two experiments were conducted in a glasshouse over summer–autumn where irrigation treatments produced defined leachate volumes. In Expt 1, leachate volumes of <5, 50, and 200 mL every 2 days each received an additional single heavy leaching event of 400 mL after 1, 2, or 3 weeks. In Expt 2, the 3 leachate volumes were each fertilised with new Osm (a newly purchased Osm) or old Osm (a 2-year-old source), where both of these sources contained 0.5–1.5% visibly damaged prills; and damaged Osm, where damaged prills were used exclusively. In both experiments, increasing leachate volume increased (P < 0.001) leaching of N (nitrate + ammonium), P, K, Ca, and Mg. In Expt 1, leaching was highest (P < 0.01) when the heavy leaching event occurred after 2 or 3 weeks for N and after 2 weeks for P. When damaged Osm was used, N, P, and K loss was 3–15 times higher (P < 0.001) than from new and old Osm (98.5–99.5% undamaged). The highest leaching loss of N, P, K, Ca, and Mg occurred in the first week after potting up, with damaged prills at highest leaching volume. Increasing leachate volume (in the presence of a heavy leaching event) reduced (P < 0.001) electrical conductivity (EC) of potting medium after 4 weeks from 1.02 to 0.54 dS/m. Damaged prills reduced (P < 0.001) EC at the high leachate volume in relation to new Osm (2.38 v. 0.29 dS/m). Treatments that increased (P < 0.05) nutrient leaching generally reduced (P < 0.05) nutrient concentrations in shoots and depressed the growth of some plant species. Shoot growth of 2 of 5 species was reduced (P < 0.001) at the highest leachate volume with an additional heavy leaching event in Week 1 or 2, and root growth of all but the slowest growing species declined with increasing leachate volume. Damaged prills reduced (P < 0.001) shoot growth of 2 of the 5 ground-cover species. This study demonstrated that excessive leaching and the use of damaged prills for containerised nursery plants fertilised with CRF results in high nutrient loss, low residual nutrient content, reduced nutrient uptake in shoots, and reduced shoot growth of some species.


2019 ◽  
Vol 11 (15) ◽  
pp. 4204 ◽  
Author(s):  
Arif Reza ◽  
Soomin Shim ◽  
Seungsoo Kim ◽  
Naveed Ahmed ◽  
Seunggun Won ◽  
...  

Struvite recovered from waste streams is considered as a sustainable alternative to commercial phosphate (P) fertilizers manufactured from P rock. In this study, struvite was recovered from swine wastewater and pre-treated as air-dried material (AM), microwave irradiated material (MM), oven-dried material (OM), and incinerated material (IM) to reduce the moisture content. Based on their solubility and crystalline nature, AM and IM were selected for further experiments. The nutrient leaching loss and fertilizing value of AM and IM were evaluated in comparison to commercial fused superphosphate (FSP) fertilizer. Soil columns were used to quantify ortho-phosphate (O-P) and ammonium nitrogen (NH4-N) leaching in soil from the test materials. Among the test materials, the average leaching rate of O-P for FSP and AM was significantly different from the control and IM (p < 0.05). The average leaching rate of NH4-N among the test materials did not show any significant difference (p > 0.05). Sudan grass growth was examined with standard (urea supplemented) and high (20x, without urea) application of test materials in pot and soil box trials, respectively, to study the fertilizing value AM and IM. There were no significant differences among the test materials, except for the control, in terms of growth rate and fresh and dry matter yield in the pot trials (p > 0.05). When AM, IM, and FSP were applied in increasing amounts (20x) without urea supplement, Sudan grass growth was 50% lower in IM and was found to be significantly different from AM and FSP (p < 0.05). The results suggest that struvite pre-treated as AM could be an effective sustainable and eco-friendly alternative to commercial P fertilizers and thus helps to ensure agricultural sustainability.


2011 ◽  
Vol 186 (2-3) ◽  
pp. 2026-2030 ◽  
Author(s):  
Md M. Rahman ◽  
YingHao Liu ◽  
Jung-Hoon Kwag ◽  
ChangSix Ra

2020 ◽  
pp. 181-191
Author(s):  
M. Tkachenko ◽  
N. Borys ◽  
Ye. Kovalenko

The research aims to establish the eff ectiveness of granular chalk use produced by «Slavuta-Calcium» Ltd. under growing Poliska–90 winter wheat variety, changing the physicochemical properties of grey forest soil and the wheat productivity. It also aims to establish optimal dosis of «Slavuta-Calcium» granular chalk as the meliorant and mineral fertilizer for grey forest soil in the system of winter wheat fertilization. In the temporary fi eld studies, various doses of nutrients N60–90–120P30–45–60K60–90–120 combined with «Slavuta–Calcium» granular chalk in a dose of Ca230–460–690 kg/ha of the active substance were studied against the background of secondary plowing of rotation products – soybean biomass that averaged 2.34 t/ha. Granular chalk is a modern complex highly eff ective meliorant with the content of Ca – 37.7 and Mg – 0.2 %, the mass fraction of carbonates (CaCO3 + MgCO3) makes at least 95 %. It is characterized by a high level of solubility when interacting with moisture in soil. It has a form of white granules, the mass fraction of 4.0–6.0 mm in size granules makes not less than 90 % and the one of 1.0 mm in size makes less than 5 %. Reactivity – 97 %. The granular chalk is advisable to apply on acidic soils, as a highly concentrated calcium-magnesium fertilizer, with the former as the dominant fertilizer, to optimize the physicochemical properties of the soil, as well as the plant nutrition system, in particular, increasing the availability of an element for assimilation by plants and as long-term ameliorants. The eff ectiveness of the use of mineral fertilizers, in particular acidic nitrogen on highly and medium acidic soils, after chemical reclamation is increased by 30–50 %, and slightly acidic by 15–20 %. The increase in productivity of crops from the combined eff ects of nutrients and chalk granulated is usually higher than when separately applied. The eff ectiveness of the integrated action of these elements is manifested in the growth of plant productivity and the quality of the resulting products, as well as the optimization of physical chemical properties and soil buff ering in the long term. In order to optimize the physicochemical properties of the arable layer of gray forest soil and the productive nutrition of agricultural crops, winter wheat, in particular, biogenic elements should be used in doses N60-90-120P30-45- 60K60-90-120 with granulated chalk «Slavuta-Calcium» in doses of Ca230-460-690 kg/ha of active substance. Granulated chalk obtained as a result of industrial grinding of solid sedimentary carbonate rocks of natural origin, subsequently under the infl uence of the granulation process of the starting material contains Ca and Mg carbonates of at least 95 %, dense granules which facilitates convenient mechanized application, as well as chalk suitable for accurate metered application on the quest map. Key words: granular chalk, gray forest soil, chemical reclamation, crop productivity.


2018 ◽  
Author(s):  
I.A. Kosareva ◽  
◽  
E.V. Semenova ◽  
L.L. Malyshev ◽  
◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 465e-465
Author(s):  
Janet L. Carlino ◽  
Kimberly A. Williams ◽  
Earl R. Allen

Chrysanthemum growth and nutrient leaching of three clinoptilolite-based root media, which were formulated and provided by Boulder Innovative Technologies, Inc. and ZeoponiX, Inc., were compared to the performance of control plants grown in Sunshine Mix #2 (3 peat: 1 perlite, v/v). The control received 210 mg·L–1 N from an 18N–4P–15K soluble fertilizer at each irrigation. The experimental zeolite-based medium NZ, which contained untreated zeolite and received the same soluble fertilizer as the control, leached lower concentrations of NH4-N, K, and PO4-P for most of the production cycle compared to the control. Medium EZ1 was formulated to provide N, P, and K as fertilizer nutrients and produced plants similar to the control based on ratings, height, width, and dry mass, but not fresh mass, at harvest when the fertilizer rate was half of that applied to the control, 105 mg·L–1 N. Medium EZ2, which did not receive P or K from soluble fertilizer, produced plants similar to the control based on rating, height, and dry mass, but not width or fresh mass, with soluble fertilizer input reduced to only N. Tissue N, P, and K concentrations of plants grown in media EZ1 and EZ2 were lower than those of control plants. With further refinements, these zeolite-based products show promise for decreasing nutrient leaching during crop production and allowing for application of lower rates of soluble fertilizers.


2017 ◽  
Vol 4 (1) ◽  
Author(s):  
S. K. YADAV ◽  
A. K. SRIVASTAVA ◽  
T. K. BAG

A field trial was conducted during two consecutive summer seasons of2012 and 2013 at ICAR-Central Potato Research Station, Shillong, Meghalaya to evaluate the integration of nutrient sources on productivity and soil health under rainfed potato cultivation in north eastern hill region of India. There were six treatments of integrated nutrient management viz., 100% Recommended dose of fertilizers,75% RDF through synthetic fertilizers and 25% recommended dose of nitrogen (RDN) through FYM, 50% RDF and 50% RDN through FYM, 25% RDF and 75% RDN through FYM, 100% RDN through FYM and control (no application of any sources of nutrients). The experiment was laid out in randomized block design with four replications. Nutrient management practices showed the significant improvement on growth and yield attributes of potato over control plot. Highest productivity of potato tubers (t/ha) was noticed with application of 75% RDF through synthetic fertilizers along with 25% RDN through FYM. Similarly, the maximum net return was associated with application of 75% RDF and 25% RDN through FYM under investigation. Application of 75% Recommended dose of nutrients through synthetic fertilizers in combination with 25% Recommended dose of nitrogen through FYM was more profitable for sustainable production of potato in the north eastern hill region of India.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 868 ◽  
Author(s):  
Chengxin Zheng ◽  
Zhanyu Zhang ◽  
Yunyu Wu ◽  
Richwell Mwiya

The use of water-saving irrigation techniques has been encouraged in rice fields in response to irrigation water scarcity. Straw return is an important means of straw reuse. However, the environmental impact of this technology, e.g., nitrogen leaching loss, must be further explored. A two-year (2017–2018) experiment was conducted to investigate the vertical migration and leaching of nitrogen in paddy fields under water-saving and straw return conditions. Treatments included traditional flood irrigation (FI) and two water-saving irrigation regimes: rain-catching and controlled irrigation (RC-CI) and drought planting with straw mulching (DP-SM). RC-CI and DP-SM both significantly decreased the irrigation input compared with FI. RC-CI increased the rice yield by 8.23%~12.26%, while DP-SM decreased it by 8.98%~15.24% compared with FI. NH4+-N was the main form of the nitrogen leaching loss in percolation water, occupying 49.06%~50.97% of TN leaching losses. The NH4+-N and TN concentration showed a decreasing trend from top to bottom in soil water of 0~54 cm depth, while the concentration of NO3−-N presented the opposite behavior. The TN and NH4+-N concentrations in percolation water of RC-CI during most of the rice growth stage were the highest among treatments in both years, and DP-SM showed a trend of decreasing TN and NH4+-N concentrations. The NO3−-N concentrations in percolation water showed a regular pattern of DP-SM > RC-CI > FI during most of the rice growth stage. RC-CI and DP-SM remarkably reduced the amount of N leaching losses compared to FI as a result of the significant decrease of percolation water volumes. The tillering and jointing-booting stages were the two critical periods of N leaching (accounted for 74.85%~86.26% of N leaching losses). Great promotion potential of RC-CI and DP-SM exists in the lower reaches of the Yangtze River, China, and DP-SM needs to be further optimized.


Sign in / Sign up

Export Citation Format

Share Document