The effects of a loaded rucksack and weighted vest on metabolic cost and stride frequency in female adults

Ergonomics ◽  
2020 ◽  
Vol 63 (2) ◽  
pp. 145-151 ◽  
Author(s):  
Hayden D. Gerhart ◽  
Ruby Pressl ◽  
Kristi L. Storti ◽  
Madeline P. Bayles ◽  
Yongsuk Seo
1991 ◽  
Vol 156 (1) ◽  
pp. 215-231 ◽  
Author(s):  
R. J. Full ◽  
M. S. Tu

To examine the effects of variation in body form on the mechanics of terrestrial locomotion, we used a miniature force platform to measure the ground reaction forces of the smallest and, relative to its mass, one of the fastest invertebrates ever studied, the American cockroach Periplaneta americana (mass = 0.83 g). From 0.44-1.0 ms-1, P. americana used an alternating tripod stepping pattern. Fluctuations in gravitational potential energy and horizontal kinetic energy of the center of mass were nearly in phase, characteristic of a running or bouncing gait. Aerial phases were observed as vertical ground reaction force approached zero at speeds above 1 ms-1. At the highest speeds (1.0-1.5 ms-1 or 50 body lengths per second), P. americana switched to quadrupedal and bipedal running. Stride frequency approached the wing beat frequencies used during flight (27 Hz). High speeds were attained by increasing stride length, whereas stride frequency showed little increase with speed. The mechanical power used to accelerate the center of mass increased curvilinearly with speed. The mass-specific mechanical energy used to move the center of mass a given distance was similar to that measured for animals five orders of magnitude larger in mass, but was only one-hundredth of the metabolic cost.


2013 ◽  
Vol 37 (4) ◽  
pp. 377-383 ◽  
Author(s):  
Stan L. Lindstedt ◽  
Patrick M. Mineo ◽  
Paul J. Schaeffer

This laboratory exercise demonstrates fundamental principles of mammalian locomotion. It provides opportunities to interrogate aspects of locomotion from biomechanics to energetics to body size scaling. It has the added benefit of having results with robust signal to noise so that students will have success even if not “meticulous” in attention to detail. First, using respirometry, students measure the energetic cost of hopping at a “preferred” hop frequency. This is followed by hopping at an imposed frequency half of the preferred. By measuring the O2 uptake and work done with each hop, students calculate mechanical efficiency. Lessons learned from this laboratory include 1) that the metabolic cost per hop at half of the preferred frequency is nearly double the cost at the preferred frequency; 2) that when a person is forced to hop at half of their preferred frequency, the mechanical efficiency is nearly that predicted for muscle but is much higher at the preferred frequency; 3) that the preferred hop frequency is strongly body size dependent; and 4) that the hop frequency of a human is nearly identical to the galloping frequency predicted for a quadruped of our size. Together, these exercises demonstrate that humans store and recover elastic recoil potential energy when hopping but that energetic savings are highly frequency dependent. This stride frequency is dependent on body size such that frequency is likely chosen to maximize this function. Finally, by requiring students to make quantitative solutions using appropriate units and dimensions of the physical variables, these exercises sharpen analytic and quantitative skills.


2000 ◽  
pp. 35-41 ◽  
Author(s):  
AE Minetti ◽  
LP Ardigo ◽  
F Saibene ◽  
S Ferrero ◽  
A Sartorio

OBJECTIVE: The aim of the present study was to evaluate the energy cost and the mechanical work of locomotion in a group of adults with childhood-onset GH deficiency (GHD). SUBJECTS: Eight males with childhood-onset GHD (mean age+/-s.d.: 31.7+/-3.6 years; mean height: 145.1+/-6.7cm) and six age-, sex- and exercise-matched normal subjects were studied. DESIGN: GHD patients and healthy controls were requested to walk and run in the speed range of 2-11km h(-1). For each condition, simultaneous mechanical and metabolic measurements were taken. METHODS: Oxygen consumption, and mechanical internal and external work of locomotion were evaluated with standard open-circuit respirometry and three-dimensional motion analysis respectively. RESULTS: External work was not significantly different between GHD patients and healthy controls, while internal work was higher for patients at all speeds. In walking, the relationships between both the mechanical energy recovery and the metabolic cost with speed were shifted towards lower speeds in patients. As a consequence, the optimal speed of walking, i.e. the speed at which the cost of locomotion is minimum, was lower for GHD patients. Stride frequency was significantly higher (11.2-11.3%) for GHD patients at all speeds of walking and running. GHD patients were unable to run at speeds higher than 8km h(-1) for the time needed to reach a metabolic steady state. CONCLUSION: It appears that both the mechanics and energetics of locomotion in short-statured adults with childhood-onset GHD are not strikingly different from those of healthy controls, thus demonstrating a substantial 'normality' in this group of GHD patients at metabolically attainable speeds. The 'harmonic' body structure and the adherence to allometric transformations in these patients do not exclude the possibility of a different metabolic role of GH in normally statured adults with childhood-onset GHD and in those with acquired GHD, taking into account the well recognized heterogeneity of the adult GHD syndrome.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3008 ◽  
Author(s):  
Leah M. Sparrow ◽  
Emily Pellatt ◽  
Sabrina S. Yu ◽  
David A. Raichlen ◽  
Herman Pontzer ◽  
...  

In legged terrestrial locomotion, the duration of stance phase, i.e., when limbs are in contact with the substrate, is positively correlated with limb length, and negatively correlated with the metabolic cost of transport. These relationships are well documented at the interspecific level, across a broad range of body sizes and travel speeds. However, such relationships are harder to evaluate within species (i.e., where natural selection operates), largely for practical reasons, including low population variance in limb length, and the presence of confounding factors such as body mass, or training. Here, we compared spatiotemporal kinematics of gait in Longshanks, a long-legged mouse line created through artificial selection, and in random-bred, mass-matched Control mice raised under identical conditions. We used a gait treadmill to test the hypothesis that Longshanks have longer stance phases and stride lengths, and decreased stride frequencies in both fore- and hind limbs, compared with Controls. Our results indicate that gait differs significantly between the two groups. Specifically, and as hypothesized, stance duration and stride length are 8–10% greater in Longshanks, while stride frequency is 8% lower than in Controls. However, there was no difference in the touch-down timing and sequence of the paws between the two lines. Taken together, these data suggest that, for a given speed, Longshanks mice take significantly fewer, longer steps to cover the same distance or running time compared to Controls, with important implications for other measures of variation among individuals in whole-organism performance, such as the metabolic cost of transport.


2014 ◽  
Vol 46 ◽  
pp. 933
Author(s):  
Colin R. Carriker ◽  
Reid McLean ◽  
Jeremy McCormick ◽  
Len Kravitz
Keyword(s):  

2002 ◽  
Vol 205 (7) ◽  
pp. 959-967 ◽  
Author(s):  
Hugh M. Herr ◽  
Gregory T. Huang ◽  
Thomas A. McMahon

SUMMARYAlthough the effects of body size on mammalian locomotion are well documented, the underlying mechanisms are not fully understood. Here, we present a computational model of the mechanics, control and energetics that unifies some well-known scale effects in running quadrupeds. The model consists of dynamic, physics-based simulations of six running mammals ranging in size from a chipmunk to a horse (0.115-676 kg). The `virtual animals' are made up of rigid segments (head, trunk and four legs) linked by joints and are similar in morphology to particular species. In the model, each stance limb acts as a spring operating within a narrow range of stiffness, forward motion is powered and controlled by active hip and shoulder torques, and metabolic cost is predicted from the time course of supporting body weight. Model parameters that are important for stability (joint stiffnesses,limb-retraction times and target positions and velocities of the limbs) are selected such that (i) running kinematics (aerial height, forward speed and body pitch) is smooth and periodic and (ii) overall leg stiffness is in agreement with published data. Both trotting and galloping gaits are modeled,and comparisons across size are made at speeds that are physiologically similar among species. Model predictions are in agreement with data on vertical stiffness, limb angles, metabolic cost of transport, stride frequency, peak force and duty factor. This work supports the idea that a single, integrative model can predict important features of running across size by employing simple strategies to control overall leg stiffness. More broadly, the model provides a quantitative framework for testing hypotheses that relate limb control, stability and metabolic cost.


1990 ◽  
Vol 149 (1) ◽  
pp. 307-317 ◽  
Author(s):  
R. J. Full ◽  
A. Tullis

Small animals use more metabolic energy per unit mass than large animals to run on a level surface. If the cost to lift one gram of mass one vertical meter is constant, small animals should require proportionally smaller increases in metabolic cost to run uphill. To test this hypothesis on very small animals possessing an exceptional capacity for ascending steep gradients, we measured the metabolic cost of locomotion in the cockroach, Periplaneta americana, running at angles of 0, 45 and 90 degrees to the horizontal. Resting oxygen consumption (VO2rest) was not affected by incline angle. Steady-state oxygen consumption (VO2ss) increased linearly with speed at all angles of ascent. The minimum cost of locomotion (the slope of the VO2ss versus speed function) increased with increasing angle of ascent. The minimum cost of locomotion on 45 and 90 degrees inclines was two and three times greater, respectively, than the cost during horizontal running. The cockroach's metabolic cost of ascent greatly exceeds that predicted from the hypothesis of a constant efficiency for vertical work. Variations in stride frequency and contact time cannot account for the high metabolic cost, because they were independent of incline angle. An increase in the metabolic cost or amount of force production may best explain the increase in metabolic cost. Small animals, such as P. americana, can easily scale vertical surfaces, but the energetic cost is considerable.


1994 ◽  
Vol 195 (1) ◽  
pp. 211-225 ◽  
Author(s):  
A E Minetti ◽  
L P Ardigò ◽  
F Saibene

The metabolic cost and the mechanical work of running at different speeds and gradients were measured on five human subjects. The mechanical work was partitioned into the internal work (Wint) due to the speed changes of body segments with respect to the body centre of mass and the external work (Wext) due to the position and speed changes of the body centre of mass in the environment. Wext was further divided into a positive part (W+ext) and a negative part (W-ext), associated with the energy increases and decreases, respectively, over the stride period. For all constant speeds, the most economical gradient was -10.6 +/-0.5% (S.D., N = 5) with a metabolic cost of 146.8 +/- 3.8 ml O2 kg-1 km-1. At each gradient, there was a unique W+ext/W-ext ratio (which was 1 in level running), irrespective of speed, with a tendency for W-ext and W+ext to disappear above a gradient of +30% and below a gradient of -30%, respectively. Wint was constant within each speed from a gradient of -15% to level running. This was the result of a nearly constant stride frequency at all negative gradients. The constancy of Wint within this gradient range implies that Wint has no role in determining the optimum gradient. The metabolic cost C was predicted from the mechanical experimental data according to the following equation: [formula: see text] where eff- (0.80), eff+ (0.18) and effi (0.30) are the efficiencies of W-ext, W+ext and Wint, respectively, and el- and el+ represent the amounts of stored and released elastic energy, which are assumed to be 55J step-1. The predicted C versus gradient curve coincides with the curve obtained from metabolic measurements. We conclude that W+ext/W-ext partitioning and the eff+/eff- ratio, i.e. the different efficiency of the muscles during acceleration and braking, explain the metabolic optimum gradient for running of about -10%.


2020 ◽  
Vol 15 (9) ◽  
pp. 1340-1343
Author(s):  
Gianluca Vernillo ◽  
Adrien Mater ◽  
Gregory Doucende ◽  
Johan Cassirame ◽  
Laurent Mourot

Purpose: To study the consequences of a fatiguing ultratrail run of 6 hours on self-optimizing capability during uphill and downhill (DR) running. Methods: The authors collected temporal stride kinematics and metabolic data in 8 (experimental group) male runners before and after the ultratrail run and in 6 (control group) male ultramarathon runners who did not run but stayed awake and performed normal, daily physical activities avoiding strenuous exercises over the 6-hour period. For each subject, preferred and optimal stride frequencies were measured, where stride frequency was systematically varied above and below the preferred one (±4% and ±8%) while running 3 conditions on level, 5% uphill, or 5% DR in a randomized order. Results: Preferred and optimal stride frequencies across grade, group, and time showed no significant differences (P ≥ .184). Metabolic cost and the energetically optimum metabolic cost showed a grade × group × time interaction (P ≥ .011), with an ∼11% increase in the 2 variables only during the DR bouts (P ≥ .037). Conclusions: Despite maintaining similar dynamics of stride frequency adjustments during the DR bout, the experimental group was not able to optimize its gait. This suggests that the DR section of ultratrail runs can introduce a perturbing factor in the runners’ optimization process, highlighting the need for incorporating DR bouts in the training programs of ultratrail runners to minimize the deleterious effects of DR on the energetically optimal gait.


Sign in / Sign up

Export Citation Format

Share Document