Application of PEGylated graphene quantum dots in cell imaging

2019 ◽  
Vol 547 (1) ◽  
pp. 21-26
Author(s):  
Kai-Qi Wang ◽  
Kun-Rong Li ◽  
Bing Yu ◽  
You-Qing Shen ◽  
Hai-Lin Cong
Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4994
Author(s):  
Weitao Li ◽  
Ningjia Jiang ◽  
Bin Wu ◽  
Yuan Liu ◽  
Luoman Zhang ◽  
...  

Biological imaging is an essential means of disease diagnosis. However, semiconductor quantum dots that are used in bioimaging applications comprise toxic metal elements that are nonbiodegradable, causing serious environmental problems. Herein, we developed a novel ecofriendly solvothermal method that uses ethanol as a solvent and doping with chlorine atoms to prepare highly fluorescent graphene quantum dots (GQDs) from seaweed. The GQDs doped with chlorine atoms exhibit high-intensity white fluorescence. Thus, their preliminary application in bioimaging has been confirmed. In addition, clear cell imaging could be performed at an excitation wavelength of 633 nm.


2018 ◽  
Vol 25 (25) ◽  
pp. 2876-2893 ◽  
Author(s):  
Keheng Li ◽  
Xinna Zhao ◽  
Gang Wei ◽  
Zhiqiang Su

Fluorescent graphene quantum dots (GQDs) have attracted increasing interest in cancer bioimaging due to their stable photoluminescence (PL), high stability, low cytotoxicity, and good biocompatibility. In this review, we present the synthesis and chemical modification of GQDs firstly, and then introduce their unique physical, chemical, and biological properties like the absorption, PL, and cytotoxicity of GQDs. Finally and most importantly, the recent applications of GQDs in cancer bioimaging are demonstrated in detail, in which we focus on the biofunctionalization of GQDs for specific cancer cell imaging and real-time molecular imaging in live cells. We expect this work would provide valuable guides on the synthesis and modification of GQDs with adjustable properties for various biomedical applications in the future.


2013 ◽  
Vol 9 (10) ◽  
pp. 1679-1685 ◽  
Author(s):  
Juan Peng ◽  
Sheng Wang ◽  
Peng-Hui Zhang ◽  
Li-Ping Jiang ◽  
Jian-Jun Shi ◽  
...  

2021 ◽  
Vol 6 (46) ◽  
pp. 13277-13285
Author(s):  
Huiting Kang ◽  
Lilei Zhang ◽  
Sheng Hu ◽  
Lianxiong Guan ◽  
Wei Liu ◽  
...  

2020 ◽  
pp. 174751982097393
Author(s):  
Jialu Shen ◽  
Weifeng Chen ◽  
Xiang Liu

A facile and effective route to synthesize graphene quantum dots for cell imaging and as a deoxidizer by using glucan as a precursor is developed. AuNPs are successfully synthesized by mixing of graphene quantum dots and Au(III) salts without any additional reductants. The reducing driving force of these graphene quantum dots is much weaker than that of strong reducing agents such as NaBH4. The sizes of the as-synthesized AuNPs are much larger, with an average size of 15 nm. Notably, this size range is specifically useful and optimal for the application of AuNPs in biomedical applications. In addition, the as-synthesized graphene quantum dots are also successfully applied in cell imaging.


Sign in / Sign up

Export Citation Format

Share Document