A new decentralised controller design method for a class of strongly interconnected systems

2016 ◽  
Vol 90 (2) ◽  
pp. 201-217 ◽  
Author(s):  
Zhisheng Duan ◽  
Zhong-Ping Jiang ◽  
Lin Huang
2011 ◽  
Vol 467-469 ◽  
pp. 1505-1510
Author(s):  
Dan Liu ◽  
Ni Hong Wang ◽  
Gui Ying Li

This paper proposes a new method that it uses the neural network to construct the solution of the Hamiltion-Jacobi inequality (HJ), and it carries on the optimization of the neural network weight using the genetic algorithm. This method causes the Lyapunov function to satisfy the HJ, avoides solving the HJ parital differential inequality, and overcomes the difficulty which the HJ parital differential inequality analysis. Beside this, it proposes a design method of a nonlinear state feedback L2-gain disturbance rejection controller based on HJ, and introduces general structure of L2-gain disturbance rejection controller in the form of neural network. The simulation demonstrates the design of controller is feasible and the closed-loop system ensures a finite gain between the disturbance and the output.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Wen-Jer Chang ◽  
Yu-Wei Lin ◽  
Yann-Horng Lin ◽  
Chin-Lin Pen ◽  
Ming-Hsuan Tsai

In many practical systems, stochastic behaviors usually occur and need to be considered in the controller design. To ensure the system performance under the effect of stochastic behaviors, the controller may become bigger even beyond the capacity of practical applications. Therefore, the actuator saturation problem also must be considered in the controller design. The type-2 Takagi-Sugeno (T-S) fuzzy model can describe the parameter uncertainties more completely than the type-1 T-S fuzzy model for a class of nonlinear systems. A fuzzy controller design method is proposed in this paper based on the Interval Type-2 (IT2) T-S fuzzy model for stochastic nonlinear systems subject to actuator saturation. The stability analysis and some corresponding sufficient conditions for the IT2 T-S fuzzy model are developed using Lyapunov theory. Via transferring the stability and control problem into Linear Matrix Inequality (LMI) problem, the proposed fuzzy control problem can be solved by the convex optimization algorithm. Finally, a nonlinear ship steering system is considered in the simulations to verify the feasibility and efficiency of the proposed fuzzy controller design method.


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
Muhammad Zaki Mustapa

This paper discusses on attitude control of a quadcopter unmanned aerial vehicle (UAV) in real time application. Newton-Euler equation is used to derive the model of system and the model characteristic is analyzed. The paper describes the controller design method for the hovering control of UAV automatic vertical take-off system. In order to take-off the quadcopter and stable the altitude, PID controller has been designed. The scope of study is to develop an altitude controller of the vertical take-off as realistic as possible. The quadcopter flight system has nonlinear characteristics. A simulation is conducted to test and analyze the control performance of the quadcopter model. The simulation was conducted by using Mat-lab Simulink. On the other hand, for the real time application, the PCI-1711 data acquisition card is used as an interface for controller design which routes from Simulink to hardware. This study showed the controller designs are implemented and tuned to the real system using Real Time Windows Target approach by Mat-Lab Simulink.


Author(s):  
Maroua Haddar ◽  
Riadh Chaari ◽  
S Caglar Baslamisli ◽  
Fakher Chaari ◽  
Mohamed Haddar

A novel active suspension control design method is proposed for attenuating vibrations caused by road disturbance inputs in vehicle suspension systems. For the control algorithm, we propose an intelligent PD controller structure that effectively rejects online estimated disturbances. The main theoretical techniques used in this paper consist of an ultra-local model which replaces the mathematical model of quarter car system and a new algebraic estimator of unknown information. The measurement of only input and output variables of the plant is required for achieving the reference tracking task and the cancellation of unmodeled exogenous and endogenous perturbations such as roughness road variation, unpredictable variation of vehicle speed and load variation. The performance and robustness of the proposed active suspension algorithm are compared with ADRC control and LQR control. Numerical results are provided for showing the improvement of passenger comfort criteria with model-free control.


Author(s):  
Tsunehiro Wakasugi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper deals with a new system design method for motion and vibration control of a three-dimensional flexible shaking table. An integrated modeling and controller design procedure for flexible shaking table system is presented. An experimental three-dimensional shaking table is built. “Reduced-Order Physical Model” procedure is adopted. A state equation system model is composed and a feedback controller is designed by applying LQI control law to achieve simultaneous motion and vibration control. Adding a feedforward, two-degree-of-freedom control system is designed. Computer simulations and control experiments are carried out and the effectiveness of the presented procedure is investigated. The robustness of the system is also investigated.


Sign in / Sign up

Export Citation Format

Share Document