Secretomic analysis of cheap enzymatic cocktails of Aspergillus niger LBM 134 grown on cassava bagasse and sugarcane bagasse

Mycologia ◽  
2020 ◽  
Vol 112 (4) ◽  
pp. 663-676
Author(s):  
Gabriela Verónica Díaz ◽  
Romina Olga Coniglio ◽  
Adriana Elizabet Alvarenga ◽  
Pedro Darío Zapata ◽  
Laura Lidia Villalba ◽  
...  
Author(s):  
CLAUDIO LIMA AGUIAR ◽  
TOBIAS J. B. MENEZES

Avaliou-se a produção de celulases e xilanase de Aspergillus niger IZ9, crescido sobre bagaço de cana, quimicamente tratado, como substrato. Os tratamentos foram: solução de hidróxido de sódio a 4%, e solução de hidróxido de sódio a 4%, ácido fosfórico p.a. e vapor. A produção das enzimas celulolíticas (celulase total, endoglicanase e ­glicosidase) e xilanase foi observada nos bagaços tratados e nãotratado. O tratamento com solução de hidróxido de sódio a 4% promoveu maior indução de síntese da maioria das enzimas, com exceção de ­glicosidase, a qual apresentou produção semelhante para os bagaços tratados quimicamente. Abstract It was evaluated the production of cellulases and xylanase by Aspergillus niger IZ09 grown in a substrate consisted of chemically treated sugarcane bagasse. The treatments were: 4% sodium hydroxide solution and 4% sodium hydroxide solution, phosphoric acid and steam. The production of the cellulolytic enzymes (total cellulase, endoglycanase and B.CEPPA, Curitiba, v. 18, n. 1, jan./jun.2000 67 ­glucosidase) and xylanase was observed in the treated and nontreated bagasses. The treatment with 4% sodium hydroxide solution promoted a greater induction of the synthesis of the majority of the enzymes, with exception of ­glucosidase, which showed similar production for both chemically treated bagasses.


2018 ◽  
Vol 11 (2) ◽  
pp. 316-329 ◽  
Author(s):  
Caio de Oliveira Gorgulho Silva ◽  
José Antonio de Aquino Ribeiro ◽  
Augusto Lopes Souto ◽  
Patrícia Verardi Abdelnur ◽  
Luís Roberto Batista ◽  
...  

2021 ◽  
Author(s):  
Gabriela Verónica Díaz ◽  
Silvana Soledad Sawostjanik Afanasiuk ◽  
Romina Olga Coniglio ◽  
Juan Ernesto Velázquez ◽  
Pedro Darío Zapata ◽  
...  

Abstract The agricultural industries generate lignocellulosic wastes that can be modified by fungi to generate high value-added products. The aim of this work was to analyze the efficiency of the bioconversion of sugarcane bagasse and cassava bagasse using two cheap home-made enzymatic cocktails from Aspergillus niger LBM 134 (produced also from agroindustrial wastes) and compare the hydrolysis yield with that obtained from the bioconversion using commercial enzymes. Sugarcane bagasse and cassava bagasse were pretreated with a soft alkaline solution before the hydrolysis carried out with home-made enzymatic cocktails of A. niger LBM 134 and with commercial enzymes to compare their performances. Mono and polysaccharides were analyzed before and after the bioconversion of both bagasses as well as their microscopic structure. The maximal yield was the 80% of total glucans saccharified from cassava bagasse. The bioconversion of both bagasses were better when we used the home-made enzymatic cocktails than commercial enzymes. We obtained high added-value products from agroindustrial wastes, home-made enzymatic cocktails and hydrolysates rich in fermentable sugars. The importance of this work lays in the higher performance of the cheap home-made enzymatic cocktails over the hydrolytic performance of commercial enzymes due to the cost of producing the home-made enzymatic cocktails were more than 500 times lower than commercial enzymes.


2005 ◽  
Vol 48 (spe) ◽  
pp. 29-36 ◽  
Author(s):  
Flávera Camargo Prado ◽  
Luciana Porto de Souza Vandenberghe ◽  
Carlos Ricardo Soccol

The aim of this work was to study the relation between citric acid production and respiration of Aspergillus niger LPB 21 in solid-state fermentation of cassava bagasse. The experiments were carried out in horizontal drum bioreactor coupled with a gas chromatography system. Fermentation was conduced for 144 h with initial substrate moisture of 60% using heat-treated cassava bagasse as sole carbon source. The exhausted air from the bioreactor was analyzed for the monitoring of CO2 produced and O2 consumed in order to estimate the biomass biosynthesis by the fungal culture. The metabolic activity of A. niger growth was associated to citric acid production. The system using FERSOL software determined 4.372 g of biomass/g of consumed O2. Estimated and analytically determined biomass values followed the same pattern showing that the applied mathematical model was adapted.


2016 ◽  
Vol 125 (1) ◽  
pp. 437-445 ◽  
Author(s):  
Elciane Regina Zanatta ◽  
Thiago Olinek Reinehr ◽  
Jamal Adb Awadallak ◽  
Sirlei Jaiana Kleinübing ◽  
João Batista Oliveira dos Santos ◽  
...  

2021 ◽  
Vol 10 (10) ◽  
pp. e396101019020
Author(s):  
Igor Magno Nicurgo Borges Rosa Martins ◽  
Luanna Stefanny Vieira Oliveira Gomes ◽  
Daniel Pasquini ◽  
Milla Alves Baffi

The enzyme biosynthesis using agricultural wastes by solid state fermentation (SSF) and the study of their physicochemical properties are meaningful approaches to improve the biomass hydrolysis. Among them, β-glucosidases and β-xylosidases are key enzymes at the lignocellulose depolymerization, which act in the cleavage of oligosaccharides in monosaccharides. In this study, the production of hemicellulases and cellulases by Pleurotus ostreatus and Aspergillus niger monocultures or in consortium was investigated, using raw sugarcane bagasse (SB) and wheat bran (WB) as substrates. The highest enzymatic activities were observed in the crude extract produced by P. ostreatus PLO6 and A. niger SCBM4 consortium with 98.5, 62.9, 3.8, 12.4, 13.3 and 20.2 U/g for β-glucosidase (β-glu), β-xylosidase (Bxyl), filter paper cellulase (FPase), xylanase (Xyl), exoglucanase (Exgl) and endoglucanase (Engl), respectively. The pH and temperature effects on β-glu and β-xyl were characterized. Optimal activities were obtained at pH 4.0 and 45 °C for β-glu and 3.5 and 55 °C for β-xyl. Both enzymes were stable at acid pH and presented thermostability. The results indicated that the enzymatic cocktail demonstrated potential characteristics for future applications in saccharifications. The use of sugarcane bagasse and wheat bran for microbial growth contributed to aggregate value to these byproducts.


2021 ◽  
Vol 22 (1) ◽  
pp. 165-171
Author(s):  
Imrana Khushk

Amylase is an indispensable and industrially important enzyme that hydrolyzes carbohydrates particularly starch into simple sugars. Amylase enzymes have been isolated from various sources such as microbes, animals and plants. However, microorganisms are highly preferred as compared to plants and animal sources. Amylases of fungal origin are highly stable compared to amylases produced by bacterial species. The aim of this study was to investigate the production of extracellular amylase enzyme from Aspergillus niger EFRL-FC-024 using sugarcane bagasse and corn waste as an energy source under submerge fermentation conditions. Primarily, the fungal strain was grown for 6 days using sugarcane bagasse and corn waste, respectively. Mainly, the growth of a microorganism was also evaluated using different pH, temperature and incubation periods. The results revealed maximum amylase production of 1.64 U/mL when A. niger was cultured for 96 h using corn waste. Moreover, addition of different nitrogen sources showed the highest amylase production when peptone was supplemented as a nitrogen source. Finally, the effect of pH indicated maximal concentration of amylase enzyme at pH 6.0. The present study will highly be beneficial to explore the role of fungal strain A. niger in amylase production at Industrial levels.


Sign in / Sign up

Export Citation Format

Share Document