Dynamics of microbial biomass nitrogen as influenced by organic matter application in paddy fields

1998 ◽  
Vol 44 (2) ◽  
pp. 167-178 ◽  
Author(s):  
Fujiyoshi Shibahara ◽  
Shigekazu Yamamuro ◽  
Kazuyuki Inubushi
2012 ◽  
Vol 599 ◽  
pp. 124-127
Author(s):  
Cheng Hu Zhang ◽  
Ting Ting Song ◽  
Ju Liu ◽  
Hui Juan Xia ◽  
Jian Zhu Wang

Natural restoration slope and vegetation-growing concrete slope were selected as plots. Soil water content (SWC), pH, and soil organic matter, total nitrogen content (TN), total organic carbon (TOC), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), basal respiration, microbial quotient and metabolic quotient (qCO2) were analyzed. The main results show that: Soil organic matter, TN and MBC of 0-10 cm soil in the natural restoration slope are significantly lower than that in the vegetation-growing concrete slopes at 0.05 level. Both MBC and MBN show a highly significant positive correlation with soil organic matter and TN. Microbial quotient shows a highly significant negative correlation with TOC and MBN, and shows a significant negative correlation with MBC. The qCO2 shows a highly significant negative correlation with pH, and a significant negative correlation with MBC. The vegetation-growing concrete technology can improve the soil ecosystem in the impaired slope.


2020 ◽  
Vol 35 (1) ◽  
pp. 108
Author(s):  
Supriyadi Supriyadi ◽  
Melja Karni Pratiwi ◽  
Slamet Minardi ◽  
Nanda Lintang Prastiyaningsih

The low organic matter content of paddy soils impacts the declining quality of land. Without the efforts to enrich the soil organic matter (SOM) content, the productivity of paddy fields will decrease or the need for inorganic fertilizers will increase to reach the level of yield. The present research aims to determine the effect of differences in organic and conventional paddy fields management practices on soil organic carbon (SOC) content and biological activities. The research was conducted from July to September 2018 on organic and conventional paddy fields in Dukuhseti Sub-district, Pati Regency, Central Java, Indonesia. Sampling points were taken from six organic samples in the organic paddy fields while the other six samples were taken from conventional paddy fields. The variables observed in this research were organic C, pH, total N soil, total bacterial colonies, soil respiration and microbial biomass C. The results show that the organic C content in the organic paddy field (2.4%) was higher than that of the conventional paddy field (1.8%). The C content of organic paddy fields increased by 0.6%. The differences of the total bacterial colonies, soil respiration and microbial biomass C between organic paddy fields and conventional paddy fields were 11.5 CFU g<sup>-1</sup>, 7.42 mg CO<sub>2</sub> week<sup>-1</sup> and 0.51 µg g<sup>-1</sup>, respectively, because the use of organic farming systems could improve the biological nature of soils and caused biological activity in organic paddy fields to have the highest value compared to conventional paddy fields.


2013 ◽  
Vol 14 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Tilak Prasad Gautam ◽  
Tej Narayan Mandal

The physico-chemical properties of soils of tropical moist forest (Charkoshe jungle) in Sunsari district of eastern Nepal were analyzed. The samples were collected during summer season from three depths: upper (0-15 cm), middle (15-30 cm) and deep (30-45 cm). They were analyzed for texture, pH, moisture, water holding capacity, organic carbon, total nitrogen, organic matter and microbial biomass carbon and nitrogen. The forest soil of upper and middle layers was loamy whereas that of deep layer was sandy loam. The pH value was lower (5.6) in upper layer than in the deep layer (6.6). The moisture content, water holding capacity, organic carbon, total nitrogen and organic matter were higher in upper layer and decreased with increasing depth. The higher level of soil nutrients in upper layer was due partly to reduction in the loss of top soil and partly to the increased supply of nutrients from the decomposed form of litter and fine roots of the forest plants. The average value of microbial biomass carbon in the soil was 676.6 μg g-¹and microbial biomass nitrogen was 59.0 μg g-¹. Nepal Journal of Science and Technology Vol. 14, No. 1 (2013) 35-40 DOI: http://dx.doi.org/10.3126/njst.v14i1.8876


2019 ◽  
Vol 56 (3) ◽  
pp. 305-311
Author(s):  
Debasis Purohit ◽  
Mitali Mandal ◽  
Avisek Dash ◽  
Kumbha Karna Rout ◽  
Narayan Panda ◽  
...  

An effective approach for improving nutrient use efficiency and crop productivity simultaneously through exploitation of biological potential for efficient acquisition and utilization of nutrients by crops is very much needed in this current era. Thus, an attempt is made here to investigate the impact of long term fertilization in the soil ecology in rice-rice cropping system in post kharif - 2015 in flooded tropical rice (Oryza sativa L.) in an acidic sandy soil. The experiment was laid out in a randomized block design with quadruplicated treatments. Soil samples at different growth stages of rice were collected from long term fertilizer experiment.The studied long-term manured treatments included 100 % N, 100% NP, 100 % NPK, 150 % NPK and 100 % NPK+FYM (5 t ha-1) and an unmanured control. Soil fertility status like SOC content and other available nutrient content has decreased continuously towards the crop growth period. Comparing the results of different treatments, it was found that the application of 100% NPK + FYM exhibited highest nutrient content in soils. With regards to microbial properties it was also observed that the amount of microbial biomass carbon (MBC) and microbial biomass nitrogen ( MBN) showed highest accumulation in 100 % NPK + FYM at maximum tillering stage of the rice. The results further reveal that dehydrogenase activity was maximum at panicle initiation stage and thereafter it decreases. Soil organic carbon content, MBC, MBN and dehydrogenase activity were significantly correlated with each other. Significant correlations were observed between rice yield and MBC at maturity stage( R2 = 0.94**) and panicle initiation stage( R2 = 0.92**) and available nitrogen content at maturity stage( R2 = 0.91**).


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1386
Author(s):  
Michael Stotter ◽  
Florian Wichern ◽  
Ralf Pude ◽  
Martin Hamer

Cultivation of Miscanthus x giganteus L. (Mis) with annual harvest of biomass could provide an additional C source for farmers. To test the potential of Mis-C for immobilizing inorganic N from slurry or manure and as a C source for soil organic matter build-up in comparison to wheat (Triticum aestivum L.) straw (WS), a greenhouse experiment was performed. Pot experiments with ryegrass (Lolium perenne L.) were set up to investigate the N dynamics of two organic fertilisers based on Mis at Campus Klein-Altendorf, Germany. The two fertilisers, a mixture of cattle slurry and Mis as well as cattle manure from Mis-bedding material resulted in a slightly higher N immobilisation. Especially at the 1st and 2nd harvest, they were partly significantly different compared with the WS treatments. The fertilisers based on Mis resulted in a slightly higher microbial biomass C and microbial biomass N and thus can be identified as an additional C source to prevent nitrogen losses and for the build-up of soil organic matter (SOM) in the long-term.


Sign in / Sign up

Export Citation Format

Share Document