The Effect of Feldspar Loading on Curing Characteristics, Mechanical Properties, Swelling Behavior and Morphology of Natural Rubber Vulcanizates

2005 ◽  
Vol 54 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Hanafi Ismail ◽  
Hakimah Osman ◽  
Azlan Ariffin
2017 ◽  
Vol 737 ◽  
pp. 236-241
Author(s):  
Apaipan Rattanapan ◽  
Pornsri Sapsrithong ◽  
Surakit Tuampoemsab

The effect of a silane coupling on curing characteristics, mechanical properties, abrasion behavior and swelling behavior of waste silicon carbide filled natural rubber compounds was investigated in the concentration 3%, 6%, 9%, 12% and 15% by weight of the particles. The waste silicon carbide content in this study was fixed at 30 phr in order to reveal the influence of silane-69 used to modify silicon carbide. The rubber compounds were prepared using a laboratory two roll mill with temperature maintained at 50°C. The curing characteristics of the composites were determined and the composites were vulcanized at 160°C using a hot press. The properties of the natural rubber compounds such as modulus at 200% elongation, stress at peak, hardness, abrasion resistance and swelling behavior were studied. Results indicate that the maximum torque of the natural rubber compounds increased with increasing silane-69 content whereas the silane-69 can be used without much effect on the scorch time and cure time. Increasing silane-69 content also gives natural rubber compounds better resistance towards swelling and increases the modulus at 200% elongation, tensile strength, hardness and abrasion resistance. The dispersion morphology of silicon carbide in the natural rubber composites was observed by scanning electron microscopy. The modified particles with improved interfacial adhesion between waste silicon carbide and natural rubber. Improvement in mechanical properties of the composites was obtained.


2013 ◽  
Vol 594-595 ◽  
pp. 634-638 ◽  
Author(s):  
N.Z. Nik Yahya ◽  
N.Z. Noimam ◽  
Hanafi Ismail ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Santiagoo Ragunathan

Curing characteristics and swelling behavior of natural rubber/styrene butadiene rubber/recycled nitrile glove (NR/SBR/rNBRg) blends were investigated. Eleven composition ratio; 50/50/0, 50/40/10, 50/30/20, 50/20/30, 50/10/40, 50/0/50, 40/50/10, 30/50/20, 20/50/30, 10/50/40, and 0/50/50 of SMRL/SBR/rNBRg with the size of rNBRg ; 2.5 3.0 cm2 were prepared by using two roll mill at room temperature. Cure characteristics such as scorch time,t2, cure time,t90, minimum torque, ML, maximum torque, MH, and swelling behavior of SMRL/SBR/rNBRg ternary blends were examined. Results indicated that the scorch time and maximum torque of the NR/SBR/rNBRg blends decreased with increasing rNBRg content. The minimum torque of the blends increased as rNBRg content increased. The cure time of NR/SBR/rNBRg blends show a unique trend, which are depending on the domain rubber content. The increment in rNBRg content decreased the crosslink density of NR/SBR/rNBRg blends.


2006 ◽  
Vol 79 (4) ◽  
pp. 553-560 ◽  
Author(s):  
Rani Joseph

Abstract HXNBR (Hydrogenated Carboxylated Nitrile Rubber) has very good heat ageing resistance and oil resistance. A novel accelerator system is designed to bring about the vulcanization of HXNBR at room temperature. The room temperature cured samples showed good mechanical properties equivalent to those of high (150 °C) temperature cured samples. Natural rubber vulcanizates are highly prone to oxidative and ozone degradation. The oil resistance of natural rubber vulcanizates is also very low. The oil resistance, ozone and oxidative degradation resistance of natural rubber vulcanizates are considerably improved by placing a thin coating of HXNBR over it.


2013 ◽  
Vol 86 (2) ◽  
pp. 205-217 ◽  
Author(s):  
Hedayatollah Sadeghi Ghari ◽  
Zahra Shakouri

ABSTRACT Research was undertaken on natural rubber (NR) nanocomposites with organoclays. A double-network (DN) structure is formed when a partially cross-linked elastomer is further cross-linked during a state of strain. Two methods were used in the preparation of NR/organoclay nanocomposites: the ordinary method (single-network NR nanocomposite) and double-networked NR (DN-NR) nanocomposites. The single-networked NR nanocomposites were used for comparison. The effects of organoclay (5 phr) with a different extension ratio on curing characteristics, mechanical properties, hardness, swelling behavior, and morphology of single- and double-networked NR nanocomposites were studied. The results showed that double-networked NR nanocomposites exhibited higher physical and mechanical properties. The tensile strength of DN-NR nanocomposites increased up to 33 MPa (more than four times greater than that of pure NR) and then decreased with an increasing extension ratio. Modulus and hardness continuously increased with an increased extension ratio. The microstructure of the NR/organoclay systems was studied by X-ray diffraction and field emission scanning electron microscopy. The effects of different extension ratios on the dispersion of organoclay layers in the nanocomposites were investigated. Generally, results showed that the optimized extension ratio in DN nanocomposites was equal (or about or around) to α= 2.


Sign in / Sign up

Export Citation Format

Share Document