Effect of the second generation and third generation biofuel blend on performance, emission and combustion characteristics of CI engine

2018 ◽  
Vol 41 (7) ◽  
pp. 767-774 ◽  
Author(s):  
D. Boopathi ◽  
S. Thiyagarajan ◽  
V. Edwin Geo ◽  
S. Madhankumar
Fuel ◽  
2021 ◽  
Vol 293 ◽  
pp. 119960
Author(s):  
Michael Talmadge ◽  
Christopher Kinchin ◽  
Helena Li Chum ◽  
Andrea de Rezende Pinho ◽  
Mary Biddy ◽  
...  

2021 ◽  
Vol 147 ◽  
pp. 111257
Author(s):  
C. Janusch ◽  
E.F. Lewin ◽  
M.L. Battaglia ◽  
E. Rezaei-Chiyaneh ◽  
M. Von Cossel

Injury ◽  
2013 ◽  
Vol 44 ◽  
pp. S16
Author(s):  
R. Armagan ◽  
T. Isik ◽  
M. Kanar ◽  
H.B. Sezer ◽  
O.T. Eren

1965 ◽  
Vol 97 (12) ◽  
pp. 1303-1318 ◽  
Author(s):  
H. J. Herbert

AbstractIn Nova Scotia one leaf cluster with an adjoining 1 inch of twig taken from the inside of each of 10 apple trees replicated four times is an adequate sample unit to measure the density of the brown mite.The brown mite has one generation with a partial second in some orchards and one with a partial second and partial third in others. The first generation adults in the bivoltine and trivoltine populations lay summer eggs on the leaves and twigs, and diapause eggs on tin twigs. The second generation adults in the bivoltine populations lay only diapause eggs; in the trivoltine populations they lay both summer and diapause eggs. The adults of the third generation lay only diapause eggs.The brown mite is found on both the leaves and woody parts of the tree. In orchards with bivoltine populations the proportion of mites on leaves reached a peak of 80% by mid-July, but thereafter gradually decreased to 10% by the end of August. However, in orchards with trivoltine populations the proportion of mites on leaves reached a peak of 80 to 90% by mid-July, remained constant until mid-August, and thereafter decreased to approximately 40% by the end of August.The number of diapause eggs laid by adults of each generation in both the bivoltine and trivoltine populations varies widely. The eggs are deposited on the trunk as well as on the branches, with the heaviest deposition in the central area of the tree. The diapause eggs laid by adults of the first generation are the last to hatch and those laid by the third generation are the first to hatch the following spring.The factors responsible for the differences in the number of generations and in the number of diapause eggs laid are unknown.


2016 ◽  
Vol 72 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Christian Reichen ◽  
Chaithanya Madhurantakam ◽  
Simon Hansen ◽  
Markus G. Grütter ◽  
Andreas Plückthun ◽  
...  

The armadillo repeat serves as a scaffold for the development of modular peptide-recognition modules. In order to develop such a system, three crystal structures of designed armadillo-repeat proteins with third-generation N-caps (YIII-type), four or five internal repeats (M-type) and second-generation C-caps (AII-type) were determined at 1.8 Å (His-YIIIM4AII), 2.0 Å (His-YIIIM5AII) and 1.95 Å (YIIIM5AII) resolution and compared with those of variants with third-generation C-caps. All constructs are full consensus designs in which the internal repeats have exactly the same sequence, and hence identical conformations of the internal repeats are expected. The N-cap and internal repeats M1to M3are indeed extremely similar, but the comparison reveals structural differences in internal repeats M4and M5and the C-cap. These differences are caused by long-range effects of the C-cap, contacting molecules in the crystal, and the intrinsic design of the repeat. Unfortunately, the rigid-body movement of the C-terminal part impairs the regular arrangement of internal repeats that forms the putative peptide-binding site. The second-generation C-cap improves the packing of buried residues and thereby the stability of the protein. These considerations are useful for future improvements of an armadillo-repeat-based peptide-recognition system.


Sign in / Sign up

Export Citation Format

Share Document