IMPROVEMENT OF OIL EXTRACTION PROCESS USING ULTRASONIC TECHNIQUE AS A SECOND-GENERATION BIOFUEL SOURCE

2019 ◽  
Vol 36 (2) ◽  
pp. 609-628
Author(s):  
A. A. Metwally
Author(s):  
E. Torres-Ramón ◽  
C.M. García-Rodríguez ◽  
K.H. Estévez-Sánchez ◽  
I.I. Ruiz-López ◽  
G.C. Rodríguez-Jimenes ◽  
...  

Fuel ◽  
2021 ◽  
Vol 293 ◽  
pp. 119960
Author(s):  
Michael Talmadge ◽  
Christopher Kinchin ◽  
Helena Li Chum ◽  
Andrea de Rezende Pinho ◽  
Mary Biddy ◽  
...  

2021 ◽  
Vol 147 ◽  
pp. 111257
Author(s):  
C. Janusch ◽  
E.F. Lewin ◽  
M.L. Battaglia ◽  
E. Rezaei-Chiyaneh ◽  
M. Von Cossel

2017 ◽  
Vol 126 ◽  
pp. 82-90 ◽  
Author(s):  
R. Amirante ◽  
E. Distaso ◽  
P. Tamburrano ◽  
A. Paduano ◽  
D. Pettinicchio ◽  
...  

2021 ◽  
pp. 37-46
Author(s):  
Fredy Torres Mejía ◽  
Juan Alexander Torres Mejía ◽  
Henry Edgardo Maradiaga Galeano ◽  
Claudia López Toro

The aim of this work is to evaluate the performance of the extraction and mechanical filtering of Jatropha curcas oil and to evaluate the primary energy of the raw material resulting from the process, this is a qualitative-quantitative study of transversal order based on measurements and analysis of the process in situ: The following factors were evaluated as factors: weight of oil per seed processed, weight of pressed cake, and measurements in the filtering process, from which a balance of matter of the process used was constructed, and the energy valuation of the oil and pressed cake, energy was used as the response variable, measured in Tons of Oil Equivalent (TEP), Barrels of Oil Equivalent (BEP), and tons of Carbon Dioxide Equivalent (Ton CO2eq). The seed used is Creole, the one existing in the area, the extraction was carried out in a KEK-P0101 press, and a KEK-F0090 filter. The collected seeds were dried and then discarded, the average shell weight is 40% of the total weight of the dry seed, from the oil extraction process a yield of 18.6% was obtained using seed with 5.8% humidity, and from the oil filtering process, when it passed through the filter, no weight loss in kg was obtained; finally, the equivalent primary energy valuation of one ton of oil is 39076. 39 MJTon-1, which is equivalent to 0.94 TEP, 2.90 Ton CO2 eq, and 20.87 BEP; in the same way one ton of Jatropha cake represents 15969.30 MJ, equivalent to 0.38 TEP, 1.18 Ton CO2 eq, and 8. 53 BEP, and the total primary energy between one ton of oil and one ton of Jatropha cake after oil extraction together contain 55045.61 MJTon-1, equivalent to 1.32 TEP, 4.08 Ton CO2 eq, and 29.41 BEP.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2075
Author(s):  
Tan Phat Dao ◽  
Thanh Viet Nguyen ◽  
Thi Yen Nhi Tran ◽  
Xuan Tien Le ◽  
Ton Nu Thuy An ◽  
...  

Pomelo peel-derived essential oils have been gaining popularity due to greater demand for stress relief therapy or hair care therapy. In this study, we first performed optimization of parameters in the pomelo essential oil extraction process on a pilot scale to gain better insights for application in larger scale production. Then extraction kinetics, activation energy, thermodynamics, and essential oil quality during the extraction process were investigated during the steam distillation process. Three experimental conditions including material mass, steam flow rate, and extraction time were taken into consideration in response surface methodology (RSM) optimization. The optimal conditions were found as follows: sample weight of 422 g for one distillation batch, steam flow rate of 2.16 mL/min and extraction time of 106 min with the coefficient of determination R2 of 0.9812. The nonlinear kinetics demonstrated the compatibility of the kinetic model with simultaneous washing and unhindered diffusion with a washing rate constant of 0.1515 min−1 and a diffusion rate constant of 0.0236 min−1. The activation energy of the washing and diffusion process was 167.43 kJ.mol−1 and 96.25 kJ.mol−1, respectively. The thermodynamic value obtained at the ΔG° value was −35.02 kJ.mol−1. The quality of pomelo peel essential oil obtained by steam distillation was characterized by its high limonene content (96.996%), determined by GC-MS.


Sign in / Sign up

Export Citation Format

Share Document