scholarly journals Nitrogen from Hairy Vetch (Vicia villosaRoth) as Winter Green Manure for White Cabbage in Organic Horticulture

2007 ◽  
Vol 25 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Guido Haas ◽  
Heike Brand ◽  
Mirea Puente de la Vega
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ningguang Dong ◽  
Guanglong Hu ◽  
Yunqi Zhang ◽  
Jianxun Qi ◽  
Yonghao Chen ◽  
...  

AbstractThis study characterized the effect of green manures (February orchid, hairy vetch, rattail fescue and a no-green-manure control) and the termination method (flail or disk) on nutrient contents, enzyme activities, microbial biomass, microbial community structure of rhizosphere soil and vegetative growth of walnut tree. All three selected green manures significantly enhanced the water content, organic C, total N and available P. The rattail fescue significantly decreased the mineral N. Total organic C, total N, mineral N and available P were significantly greater under flail than under disk. Hairy vetch and February orchid significantly improved levels of soil β-glucosidase, N-acetyl-glucosaminidase and acid phosphatase activity, whereas rattail fescue improved only β-glucosidase activity. All of the green manures significantly decreased phenoloxidase activity. β-glucosidase, N-acetyl-glucosaminidase and acid phosphatase activities were significantly greater under flail relative to disk. The termination method had no significant effect on phenoloxidase activity. The different types of green manures and termination methods significantly altered the soil microbial biomass and microbial community structure. The green-manure treatments were characterized by a significantly greater abundance of Gram-positive (Gram +) bacteria, total bacteria and saprophytic fungi compared to the control. Hairy vetch significantly decreased the abundance of arbuscular mycorrhizal fungi (AMF) while February orchid and rattail fescue increased their abundance compared to the no-green-manure treatment. The abundance rates of Gram+ bacteria, actinomycetes, saprophytic fungi and AMF were significantly greater in soils under flail than under disk. In terms of vegetative growth of walnut tree, hairy vetch showed the greatest positive effects. The growth of walnut tree was significantly greater under flail relative to disk. Our results indicate that green-manure application benefits the rhizosphere soil micro-ecology, rhizosphere soil nutrient contents and tree growth. Overall, the hairy vetch and flail combined treatment is recommended for walnut orchards in northern China.


2008 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Xin-Gen Zhou ◽  
Kathryne L. Everts

Watermelon gummy stem blight (GSB) management using a green manure cover crop, the weather-based disease forecasting program ‘Melcast,’ and bio- and reduced-risk fungicides was evaluated in Maryland. Soil incorporation of hairy vetch winter cover crop suppressed percent foliage affected by GSB in comparison to winter fallow in three of five trials conducted in 2004 and 2005. Programs of Reynoutria sachalinensis, Bacillus subtilis, or harpin protein applied in rotation with chlorothalonil provided control of GSB as effectively as did EBDC, boscalid, or cyprodinil plus fludioxonil. However, the bio-fungicide programs did not perform as well as chlorothalonil alternated with pyraclostrobin plus boscalid in 2005. Melcast-scheduled sprays of B. subtilis in rotation with chlorothalonil resulted in an average of 73% less synthetic fungicide applied to watermelon. However, GSB reduction in the B. subtilis program, although similar in 2005, was less that that obtained with chlorothalonil alone in 2004. These results suggest that the combined use of green manure with Melcast-scheduled fungicide applications could effectively manage GSB and reduce fungicide use. Biofungicides alternated with chlorothalonil also minimized use of synthetic fungicides and were effective under some conditions, but should be used with caution. Accepted for publication 22 September 2008. Published 20 November 2008.


2006 ◽  
Vol 7 (1) ◽  
pp. 23 ◽  
Author(s):  
X. G. Zhou ◽  
K. L. Everts

Hairy vetch (Vicia villosa Roth) green manure is a newly-described potential management tool for Fusarium wilt of watermelon, but control is insufficient when watermelon, especially triploid watermelon, is grown in severely infested soils. A field experiment in a split-split-plot design was conducted over two years to evaluate efficacy of hairy vetch green manure alone and in combination with a moderately wilt-resistant (MR) triploid watermelon cultivar for wilt suppression compared with preplant soil fumigants. Either the soil-incorporated hairy vetch winter cover crop or the MR cultivar was effective in reducing wilt incidence, promoting plant vine growth, and increasing fruit yield. However, neither approach alone resulted in disease reductions sufficient to obtain an acceptable level of marketable fruit yield. An additive effect was observed when both treatments were combined and was greater than that obtained with the fumigants methyl bromide or metam sodium. Stem colonization by Fusarium oxysporum f. sp. niveum was lower following hairy vetch green manure than in fallow treatments, and was lowest in the MR cultivar grown in green-manured plots. The combined use of hairy vetch green manure and a MR cultivar can enhance suppression of Fusarium wilt in triploid watermelon. Accepted for publication 25 February 2006. Published 5 April 2006.


2016 ◽  
Vol 82 (6) ◽  
pp. 1767-1777 ◽  
Author(s):  
Neiunna L. Reed-Jones ◽  
Sasha Cahn Marine ◽  
Kathryne L. Everts ◽  
Shirley A. Micallef

ABSTRACTCover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated withEscherichia coliandListeria innocuain the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P< 0.001).E. colilevels declined when soil temperatures dipped to <5°C and were detected only sporadically the following spring.L. innocuadiminished somewhat but persisted, independently of season. In an organic field, the cover crop was a factor forE. coliin year 1 (P= 0.004) and forL. innocuain year 2 (P= 0.011). In year 1,E. colilevels were highest in the rye and hairy vetch-rye plots. In year 2,L. innocualevels were higher in hairy vetch-rye (P= 0.01) and hairy vetch (P= 0.03) plots than in the rye plot. Bacterial populations grew (P< 0.05) or remained the same 4 weeks after green manure incorporation, although initial reductions inL. innocuanumbers were observed after tilling (P< 0.05). Green manure type was a factor only forL. innocuaabundance in a transitional field (P< 0.05). Overall, the impacts of cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies.


2013 ◽  
Vol 46 (6) ◽  
pp. 606-609 ◽  
Author(s):  
Jin-Hee Ryu ◽  
Weon-Tai Jeon ◽  
Min-Tae Kim ◽  
Jong-Seo Choi ◽  
Sook-Jin Kim ◽  
...  

2019 ◽  
Vol 35 (5) ◽  
pp. 561-570 ◽  
Author(s):  
Tanka P. Kandel ◽  
Prasanna H. Gowda ◽  
Brian K. Northup ◽  
Alexandre C. Rocateli

AbstractIn this study, we measured nitrous oxide (N2O) emissions from plots of fall-planted hairy vetch (HV, Vicia villosa) grown as a green nitrogen (N) source for following summer forage crabgrass (Digitaria sanguinalis). Two treatments were compared: (i) HV grown solely as green manure where all biomass was incorporated by tillage, and (ii) harvesting of aboveground HV biomass prior to planting of crabgrass. Fluxes of N2O were measured with closed chamber systems on 27 dates during a 2-month growth period of crabgrass after the termination of HV in early May. At termination, the average aboveground biomass yield of HV was 4.6 Mg ha−1 with 146 kg N ha−1 content. The N2O emissions were as high as 66 g N2O-N ha−1 day−1 on day 1 after HV incorporation, but reached close to zero within a week. Emissions of N2O increased with subsequent rainfall and irrigation events from both treatments but emission peaks were not observed during the rapid growth of crabgrass. Two-month cumulative emission of N2O (mean ± s.e., n = 4) from HV incorporated plots (921 ± 120 g N2O-N ha−1) was three times (P < 0.05) of HV harvested plots (326 ± 30 g N2O-N ha−1). However, crabgrass biomass yields, N concentrations and total biomass N uptake were decreased significantly by harvesting HV. In conclusion, the results suggested that whereas removal of HV biomass for use as forage may significantly reduce N2O emissions, quantity and quality of the following recipient crops may be constrained.


2018 ◽  
Vol 26 (4) ◽  
pp. 719-729
Author(s):  
Lee Cho-Rong ◽  
Pil-Joo Kim ◽  
Yura Oh ◽  
Choong-Bae Park ◽  
Kwang-Lai Park ◽  
...  

2014 ◽  
Vol 48 (3) ◽  
pp. 85-91 ◽  
Author(s):  
Chang-Hyu Yang ◽  
◽  
Pyeong Shin ◽  
Nam-Hyun Baek ◽  
Kwang-Min Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document